reactor is $25 \%$ efficient.

How many events per second are required to generate 900 MW of power?


2 Uranium-236 undergoes nuclear fission to produce barium-144, krypton-89 and three free
What is the energy released in this process?

| Nuclide | Binding energy per <br> nucleon / MeV |
| :---: | :---: |
| ${ }_{92}^{238} \mathrm{U}$ | 7.5 |
| 144 <br> 58 <br> Fa | 8.3 |
| ${ }_{36}^{89} \mathrm{Kr}$ | 8.6 |

A 84 MeV
0

$$
{ }^{236} u \rightarrow{ }^{144}
$$

$$
\begin{gathered}
236 x \\
75
\end{gathered} \rightarrow \begin{gathered}
144 x \\
1770
\end{gathered} \rightarrow \begin{gathered}
89 x \\
8.6 \\
1
\end{gathered}+195.2+765.4
$$

$$
\Delta=190.6 \mathrm{MeV}
$$

B $\quad 106 \mathrm{MeV}$ $\square$
C 191 MeV
0

D 3730 MeV $\square$
(Total 1 mark)

The graph shows how the binding energy per nucleon varies with the nucleon number for stable nuclei.


What is the approximate total binding energy for a nucleus of ${ }_{74}^{184} \mathrm{~W}$ ?

A $\quad 1.28 \mathrm{pJ} \quad \square$

$$
8 \mathrm{MeV} / \text { nucleon }
$$

B $\quad 94.7 \mathrm{pJ} \quad \circ$

$$
\text { so } \quad 8 \times 10^{6} \times 184 \times 1.6 \times 10^{-}
$$

C $\quad 103 \mathrm{pJ} \quad \square$
(D) $230 \mathrm{pJ} \quad \circ$
(Total 1 mark)
(a) Scattering experiments are used to investigate the nuclei of gold atoms.

In one experiment, alpha particles, all of the same energy (monoenergetic), are incident on a foil made from a single isotope of gold.
(i) State the main interaction when an alpha particle is scattered by a gold nucleus.

(ii) The gold foil is replaced with another foil of the same size made from a mixture of isotopes of gold. Nothing else in the experiment is changed.

Explain whether or not the scattering distribution of the monoenergetic alpha particles remains the same. depends l
$\rightarrow$ No whapie : some change on huclecs

(b) Data from alpha-particle scattering experiments using elements other than gold allow scientists to relate the radius $R$, of a nucleus, to its nucleon number, $A$. The graph shows the relationship obtained from the data in a graphical form, which obeys the relationship $R=r_{0} A^{\frac{1}{3}}$

(i) Use information from the graph to show that $r_{0}$ is about $1.4 \times 10^{-15} \mathrm{~m}$.

A


$$
\approx 1.49 \times 10^{-15}
$$

(1)
(ii) Show that the radius of a ${ }_{23}^{51} \mathrm{~V}$ nucleus is about $5 \times 10^{-15} \mathrm{~m}$.

(c) $\begin{aligned} & \text { Calculate the density of a }{ }_{23}^{51} \mathrm{~V} \text { nucleus. } \\ & \\ & \text { State an appropriate unit for your answer. }\end{aligned} \quad \quad F=5 \times 10^{-15} \quad \rho=\frac{M}{V}$.


$$
\begin{equation*}
\text { density } \underbrace{1.6 \times 10^{17}} \text { unit } \mathrm{Ky}_{\mathrm{g}} \mathrm{~m}^{3} \tag{3}
\end{equation*}
$$

(Total 8 marks)

## 1

C

## 2

D
(a) (i) electromagnetic / electrostatic / Coulomb (repulsion between the alpha particles and the nuclei) $\checkmark$

The interaction must be named not just described.
(ii) the scattering distribution remains the same (because the alpha particles interact with a nucleus) whose charge / proton number / atomic number remains the same or the (repulsive) force remains the same

The mark requires a described distribution and the reason for it.
Or
the scattering distribution changes / becomes less distinct because there is a mixture of nuclear masses (which gives a mixture of nuclear recoils) $\checkmark$ (owtte)

A reference must be made to mass and not density or size.
(b) (i) use of graph to find $r_{0}$
e.g. $r_{0}=6.0 \times 10^{-15} / 75^{1 / 3} \checkmark$
(or $8.0 \times 10^{-15} / 175^{1 / 3}$ )
$\left(r_{0}=1.43 \times 10^{-15} \mathrm{~m}\right)$
Substitution and calculation $t$ must be shown.
Condone a gradient calculation on $R$ against $A^{1 / 3}$ graph (not graph in question) as $R \propto A^{1 / 3}$
(ii) Escalate if clip shows ${ }_{13}^{27} \mathrm{Al}$ in the question giving $\mathrm{R} \approx 4 \times 10^{-15} \mathrm{~m}$.
(using $R=r_{0} A^{1 / 3}$ )
$R=1.43 \times 10^{-15} \times 51^{1 / 3} \checkmark$
$R=5.3 \times 10^{-15}(\mathrm{~m}) \checkmark$
( $R=5.2 \times 10^{-15} \mathrm{~m}$ from
$r_{0}=1.4 \times 10^{-15} \mathrm{~m}$ )
First mark for working.
Second mark for evaluation which must be 2 or more sig figs allow CE from (i) $R=3.71 \times$ (i).
Possible escalation.
(c) Escalate if clip shows ${ }_{13}^{27}$ in the question and / or the use of 27 in the working.

$$
\begin{aligned}
& \text { density }=\text { mass } / \text { volume } \\
& m=51 \times 1.67 \times 10^{-27} \\
& \left(=8.5 \times 10^{-26} \mathrm{~kg}\right)
\end{aligned}
$$

Give the first mark for substitution of data into the top line or bottom line of the calculation of density.
$v=4 / 3 \pi\left(5.3 \times 10^{-15}\right)^{3}$
$\left(6.2(4) \times 10^{-43} \mathrm{~m}^{3}\right)$
In the second alternative the mark for the substitution is only given if the working equation is given as well.

Or
density $=A \times \mathrm{u} / 4 / 3 \pi\left(r_{0} A^{1 / 3}\right)^{3}$
$=\mathrm{u} / 4 / 3 \pi\left(r_{0}\right)^{3}$
$51 \times 1.67 \times 10^{-27}$ would gain a mark on its own but $1.66 \times 10^{-27}$ would need $u / 4 / 3 \pi\left(r_{0}\right)^{3}$ as well to gain the mark.
top line $=1.66 \times 10^{-27}$
bottom line $=4 / 3 \pi\left(1.43 \times 10^{-15}\right)^{3}$
$\checkmark$ for one substitution
density $=1.4 \times 10^{17} \checkmark$
$\left(1.37 \times 10^{17}\right)$
$\mathrm{kg} \mathrm{m}^{-3} \checkmark$
Expect a large spread of possible answers. For example
If $R=5 \times 10^{-15} \mathrm{~V}=5.24 \times 10^{-43}$ and density $=1.63 \times 10^{17}$.
Possible escalation.

