1 (a) Calculate the binding energy, in MeV , of a nucleus of ${ }_{27}^{59} \mathrm{Co}$.
nuclear mass of ${ }_{27}^{59} \mathrm{Co}=58.93320 \mathrm{u}$

Youtube walkthrough

binding energy = \qquad MeV
(b) A nucleus of iron Fe-59 decays into a stable nucleus of cobalt Co-59. It decays by β^{-} emission followed by the emission of γ-radiation as the Co-59 nucleus de-excites into its ground state.

The total energy released when the Fe-59 nucleus decays is $2.52 \times 10^{-13} \mathrm{~J}$.
The Fe-59 nucleus can decay to one of three excited states of the cobalt-59 nucleus as shown below. The energies of the excited states are shown relative to the ground state.

Calculate the maximum possible kinetic energy, in MeV , of the β^{-}particle emitted when the Fe-59 nucleus decays into an excited state that has energy above the ground state.
maximum kinetic energy = \qquad MeV
(c) Following the production of excited states of ${ }_{27}^{59} \mathrm{Co}, \gamma$-radiation of discrete wavelengths is emitted.

State the maximum number of discrete wavelengths that could be emitted.
(d) Calculate the longest wavelength of the emitted γ-radiation.

```
Longest wavelength =
```

\qquad m

2 The isotope of uranium, ${ }_{92}^{238} \mathrm{U}$, decays into a stable isotope of lead, ${ }_{82}^{206} \mathrm{~Pb}$, by means of a series of α and β^{-}decays.
(a) In this series of decays, α decay occurs 8 times and β^{-}decay occurs n times. Calculate n.
answer $=$
(b) (i) Explain what is meant by the binding energy of a nucleus.
\qquad
\qquad
\qquad
(ii) Figure 1 shows the binding energy per nucleon for some stable nuclides.

Figure 1

Use Figure 1 to estimate the binding energy, in MeV , of the ${ }_{82}^{206} \mathrm{~Pb}$ nucleus.
answer =
\qquad MeV
(c) The half-life of ${ }_{92}^{238} \mathrm{U}$ is 4.5×10^{9} years, which is much larger than all the other half-lives of the decays in the series.

A rock sample when formed originally contained 3.0×10^{22} atoms of ${ }_{92}^{238} \mathrm{U}$ and no ${ }_{82}^{206} \mathrm{~Pb}$ atoms.

At any given time most of the atoms are either ${ }_{92}^{238} \mathrm{U}$ or ${ }_{82}^{206} \mathrm{~Pb}$ with a negligible number of atoms in other forms in the decay series.
(i) Sketch on Figure 2 graphs to show how the number of ${ }_{92}^{238} \mathrm{U}$ atoms and the number of ${ }_{82}^{206} \mathrm{~Pb}$ atoms in the rock sample vary over a period of 1.0×10^{10} years from its formation.
Label your graphs U and Pb .
Figure 2
number
of atoms $/ 10^{22}$

(ii) A certain time, t, after its formation the sample contained twice as many ${ }_{92}^{238} \mathrm{U}$ atoms as ${ }_{82}^{206} \mathrm{~Pb}$ atoms.
Show that the number of ${ }_{92}^{238} \mathrm{U}$ atoms in the rock sample at time t was 2.0×10^{22}.
answer $=$ \qquad years

3 (a) (i) Sketch a graph to show how the neutron number, N, varies with the proton number, Z, for naturally occurring stable nuclei over the range $Z=0$ to $Z=90$. Show values of N and Z on the axes of your graph and draw the $N=Z$ line.

(ii) On your graph mark points, one for each, to indicate the position of an unstable nuclide which would be likely to be
an α emitter, labelling it A,
a β^{-}emitter, labelling it B.
(b) State the changes in N and Z which are produced in the emission of
(i) an α particle,
\qquad
\qquad
(ii) a β^{-}particle.
\qquad
\qquad
(c) The results of electron scattering experiments using different target elements show that

$$
R=r_{0} A^{\frac{1}{3}}
$$

where A is the nucleon number and r_{0} is a constant.
Use this equation to show that the density of a nucleus is independent of its mass.
\qquad
\qquad
\qquad
\qquad

4 (a) (i) Explain why, despite the electrostatic repulsion between protons, the nuclei of most atoms of low nucleon number are stable.
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
(ii) Suggest why stable nuclei of higher nucleon number have greater numbers of neutrons than protons.
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
(iii) All nuclei have approximately the same density. State and explain what this suggests about the nature of the strong nuclear force.
\qquad
\qquad
\qquad
\qquad
\qquad
(b) (i) Compare the electrostatic repulsion and the gravitational attraction between a pair of protons the centres of which are separated by $1.2 \times 10^{-15} \mathrm{~m}$.
proton charge
$=1.6 \times 10^{-19} \mathrm{C}$
proton mass
$=1.7 \times 10^{-27} \mathrm{~kg}$
gravitational constant
$=6.7 \times 10^{-11} \mathrm{~N} \mathrm{~m}^{2} \mathrm{~kg}^{-2}$
permittivity of free space
$=8.9 \times 10^{-12} \mathrm{~F} \mathrm{~m}^{-1}$
(ii) Comment on the relative roles of gravitational attraction and electrostatic repulsion in nuclear structure.
\qquad
\qquad

