(a) Calculate the binding energy, in MeV, of a nucleus of $^{59}_{27}$ Co.

nuclear mass of ${}^{59}_{27}$ Co = 58.93320 u

1

Youtube walkthrough

binding energy = _____ MeV

(3)

(b) A nucleus of iron Fe-59 decays into a stable nucleus of cobalt Co-59. It decays by β⁻ emission followed by the emission of *γ*-radiation as the Co-59 nucleus de-excites into its ground state.

The total energy released when the Fe-59 nucleus decays is 2.52×10^{-13} J.

The Fe-59 nucleus can decay to one of three excited states of the cobalt-59 nucleus as shown below. The energies of the excited states are shown relative to the ground state.

Calculate the maximum possible kinetic energy, in MeV, of the β^- particle emitted when the Fe-59 nucleus decays into an excited state that has energy above the ground state.

maximum kinetic energy = _____ MeV

(2)

(c) Following the production of excited states of ${}^{59}_{27}$ Co, γ -radiation of discrete wavelengths is emitted.

State the maximum number of discrete wavelengths that could be emitted.

maximum number = ____

(d) Calculate the longest wavelength of the emitted γ -radiation.

Longest wavelength = _____ m

(3) (Total 9 marks)

2 The isotope of uranium, $\frac{238}{92}$ U, decays into a stable isotope of lead, $\frac{206}{82}$ Pb, by means of a series of α and β^- decays.

(a) In this series of decays, α decay occurs 8 times and β^- decay occurs *n* times. Calculate *n*.

(2)

(ii) **Figure 1** shows the binding energy per nucleon for some stable nuclides.

Use Figure 1 to estimate the binding energy, in MeV, of the $^{206}_{82}\mathrm{Pb}\,$ nucleus.

answer = _____ MeV

(1)

(c) The half-life of $\frac{238}{92}$ U is 4.5 × 10⁹ years, which is much larger than all the other half-lives of the decays in the series.

A rock sample when formed originally contained 3.0 × 10²² atoms of $^{238}_{92}$ U and no $^{206}_{82}$ Pb atoms.

At any given time most of the atoms are either $^{238}_{92}$ U or $^{206}_{82}$ Pb with a negligible number of atoms in other forms in the decay series.

(i) Sketch on **Figure 2** graphs to show how the number of $^{238}_{92}$ U atoms and the number of $^{206}_{82}$ Pb atoms in the rock sample vary over a period of 1.0×10^{10} years from its formation.

Label your graphs U and Pb.

(ii) A certain time, *t*, after its formation the sample contained twice as many $^{238}_{92}$ U atoms as $^{206}_{82}$ Pb atoms.

Show that the number of $\frac{238}{92}$ U atoms in the rock sample at time *t* was 2.0 × 10²².

(2)

(ii) Calculate *t* in years.

3

answer = _____ years

(3) (Total 10 marks)

(a) (i) Sketch a graph to show how the neutron number, N, varies with the proton number, Z, for naturally occurring stable nuclei over the range Z = 0 to Z = 90. Show values of N and Z on the axes of your graph and draw the N = Z line.

(ii) On your graph mark points, one for each, to indicate the position of an unstable nuclide which would be likely to be

an α emitter, labelling it A,

a β^- emitter, labelling it B.

(5)

(b) State the changes in N and Z which are produced in the emission of

(i) an α particle, a β^- particle. (ii) (2) The results of electron scattering experiments using different target elements show that $R = r_0 A^{\frac{1}{3}}$ where A is the nucleon number and r_0 is a constant. Use this equation to show that the density of a nucleus is independent of its mass. (3) (Total 10 marks) Explain why, despite the electrostatic repulsion between protons, the nuclei of most (i) atoms of low nucleon number are stable.

4

(a)

(C)

(i	(ii)	Suggest why stable nuclei of higher nucleon number have greater numbers of neutrons than protons.		
(i	(iii)	All nuclei have approximate	ely the same density. State and explain what this	
·	. ,	suggests about the nature o	of the strong nuclear force.	
(1	(i)	Compare the electrostatic repulsion and the gravitational attraction between a protons the centres of which are separated by 1.2×10^{-15} m.		
		proton charge proton mass gravitational constant permittivity of free space	= $1.6 \times 10^{-19} \text{ C}$ = $1.7 \times 10^{-27} \text{ kg}$ = $6.7 \times 10^{-11} \text{ N m}^2 \text{ kg}^{-2}$ = $8.9 \times 10^{-12} \text{ F m}^{-1}$	

(ii) Comment on the relative roles of gravitational attraction and electrostatic repulsion in nuclear structure.

(6)