1 (a) Define the capacitance of a capacitor.
\qquad
\qquad
\qquad
\qquad
(b) The circuit shown in the figure below contains a battery, a resistor, a capacitor and a switch.

The switch in the circuit is closed at time $t=0$. The graph shows how the charge Q stored by the capacitor varies with t.

(b) (i) When the capacitor is fully charged, the charge stored is $13.2 \mu \mathrm{C}$. The electromotive force (emf) of the battery is 6.0 V . Determine the capacitance of the capacitor.
answer = \qquad F
(ii) The time constant for this circuit is the time taken for the charge stored to increase from 0 to 63% of its final value. Use the graph to find the time constant in milliseconds.
answer = \qquad ms
(iii) Hence calculate the resistance of the resistor.

answer =

\qquad Ω
(iv) What physical quantity is represented by the gradient of the graph?
\qquad
\qquad
(c) (i) Calculate the maximum value of the current, in mA , in this circuit during the charging process.
answer = \qquad mA
(ii) Sketch a graph on the outline axes to show how the current varies with time as the capacitor is charged. Mark the maximum value of the current on your graph.
current/mA

2 (a) State the three factors upon which the capacitance of a parallel plate capacitor depends.
\qquad
\qquad
\qquad
(b) The figure below shows a circuit for measuring the capacitance of a capacitor.

The switch is driven by a signal generator and oscillates between $\mathbf{S}_{\mathbf{1}}$ and $\mathbf{S}_{\mathbf{2}}$ with frequency f.

When the switch is in position $\mathbf{S}_{\mathbf{1}}$ the capacitor charges until the potential difference across it is equal to the supply emf. When the switch moves to position $\mathbf{S}_{\mathbf{2}}$ the capacitor discharges through the microammeter which has a resistance of 1000Ω.

In one experiment a $0.047 \mu \mathrm{~F}$ capacitor is used with a 12 V supply.
(i) Calculate the charge stored by the capacitor when the switch is in position \mathbf{S}_{1}.
(ii) Calculate the time for which the switch must remain in contact with $\mathbf{S}_{\mathbf{2}}$ in order for the charge on the capacitor to fall to 1% of its initial charge.
(iii) Assuming that the capacitor discharges all the stored charge through the microammeter, calculate the reading on the meter when the switch oscillates at 400 Hz .

3 A capacitor of capacitance C has a charge of Q stored on the plates. The potential difference between the plates is doubled.

What is the change in the energy stored by the capacitor?
A $\frac{Q^{2}}{2 C}$

B $\frac{Q^{2}}{C}$

C $\frac{3 Q^{2}}{2 C}$

D $\frac{2 Q^{2}}{C}$

(Total 1 mark)
4 A parallel-plate capacitor has square plates of length l separated by distance d and is filled with a dielectric.

A second capacitor has square plates of length $2 l$ separated by distance $2 d$ and has air as its dielectric.

Both capacitors have the same capacitance.
What is the relative permittivity of the dielectric in the first capacitor?

A $\frac{1}{2}$

B 1

C 2

D 8

(Total 1 mark)

5 A parallel-plate capacitor is fully charged and then disconnected from the power supply. A dielectric is then inserted between the plates.

Which row correctly identifies the charge on the plates and the electric field strength between the plates?

	Charge	Electric field strength	
A	Stays the same	Increases	0
B	Increases	Decreases	0
C	Increases	Increases	0
D	Stays the same	Decreases	0

