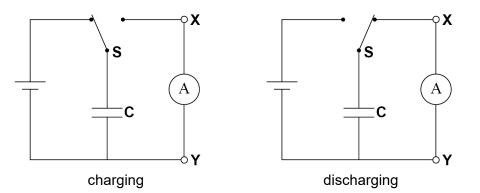


16



1 7 A switch **S** allows capacitor **C** to be completely charged by a cell and then completely discharged through an ammeter.

The emf of the cell is 4.0~V and it has negligible internal resistance. The capacitance of **C** is $0.40~\mu F$ and there are 8000 charge–discharge cycles every second.

What are the magnitude and direction of the average conventional current in the ammeter? [1 mark]

	Magnitude of current / ${f A}$	Direction of current	
Α	1.3×10^{-2}	X to Y	0
в	1.3×10^{-2}	Y to X	0
С	$2.0 imes10^{-10}$	X to Y	0
D	$2.0 imes10^{-10}$	Y to X	0

				Do not write	
1 8	A 30 μ F capacitor is charged by connecting it to a battery of emf 4.0 V. The initial charge on the capacitor is Q_0 .				
	The capacitor is then discharged through a $500 \ \mathrm{k}\Omega$ resistor. The time constant for the circuit is T .				
	Which is correct?		[1 mark]		
	A <i>T</i> is 15 ms.	[0		
	B Q_0 is 12 μ C.	Γ	0		
	C After a time T the pd across	the capacitor is 1.5 V.	0		
	D After a time $2T$ the charge of	n the capacitor is $Q_0 e^2$.	0		
1 9	 Capacitor X of capacitance <i>C</i> has square plates of side length <i>l</i> and separation <i>d</i> and is made with a dielectric of relative permittivity <i>ε</i>. Capacitor Y has square plates of side length 3<i>l</i> and separation d/3 and is made with a 				
	dielectric of relative permittivity $\frac{\varepsilon}{3}$.				
	What is the capacitance of Y ?		[4 mork]		
			[1 mark]		
	A $\frac{C}{27}$	0			
	B $\frac{C}{9}$	0			
	9				
	C 9 <i>C</i>	0			
	D 27 <i>C</i>	0			
				Į.	

Turn over ►

2 0	A parallel plate capacitor is connected across a battery and the energy stored in the			ite ne			
	capacitor is E . Without disconnecting the battery, the separation of the plates is halved.						
	What is the energy now stored	[1 mark]					
	A 0.5 <i>E</i>	\circ					
	B <i>E</i>	0					
	C 2 <i>E</i>	0					
	D 4 <i>E</i>	0					
2 1	 A fully charged capacitor of capacitance 2.0 mF discharges through a 15 kΩ resistor. What fraction of the stored energy remains after 1.0 minute? [1 mark] 						
	A $\frac{1}{4}$	0					
	B $\frac{1}{e^2}$	0					
	c $\frac{1}{16}$	0					
	D $\frac{1}{e^4}$	0					
2 2	A horizontal wire of length 0.25 m carrying a current of 3.0 A is perpendicular to a magnetic field. The mass of the wire is $3.0 \times 10^{-3} \text{ kg}$ and the weight of the wire is supported in equilibrium by the magnetic field.						
	What is the flux density of the	[1 mark]					
	A 2.6 T	0					
	B $3.9 \times 10^{-2} \text{ T}$	0					
	C $2.2 \times 10^{-2} \text{ T}$	0					
	D $4.0 \times 10^{-3} \text{ T}$	0					

