

AQA 2023	P2 17		
0 5.2	Show that the capacitance of the capacitor is about $1\times 10^{-4}~{\rm F}.$	[4 marks]	Do not write outside the box

Question 5 continues on the next page

Turn over ►

1 7 A switch **S** allows capacitor **C** to be completely charged by a cell and then completely discharged through an ammeter.

The emf of the cell is 4.0~V and it has negligible internal resistance. The capacitance of **C** is $0.40~\mu F$ and there are 8000 charge–discharge cycles every second.

What are the magnitude and direction of the average conventional current in the ammeter? [1 mark]

	Magnitude of current / A	Direction of current	
Α	1.3×10^{-2}	X to Y	0
в	1.3×10^{-2}	Y to X	0
с	$2.0 imes 10^{-10}$	X to Y	0
D	$2.0 imes 10^{-10}$	Y to X	0

				Do not write
1 8	A 30 μF capacitor is charged b The initial charge on the capac	y connecting it to a battery of emitor is Q_0 .	nf 4.0 V.	outside the box
	The capacitor is then discharge The time constant for the circu	ed through a 500 kΩ resistor. t is <i>T</i> .		
	Which is correct?		[1 mark]	
	A <i>T</i> is 15 ms.	[0	
	B Q_0 is 12 µC.	Γ	0	
	C After a time T the pd across	the capacitor is 1.5 V.	0	
	D After a time $2T$ the charge of	n the capacitor is $Q_0 e^2$.	0	
1 9	Capacitor X of capacitance C h made with a dielectric of relativ	as square plates of side length <i>i</i> e permittivity <i>ɛ</i> .	l and separation d and is	
	Capacitor Y has square plates	of side length $3l$ and separation	$\frac{d}{3}$ and is made with a	
	dielectric of relative permittivity	$\frac{\varepsilon}{3}$.		
	What is the capacitance of Y ?		[4 mork]	
			ני ווומואן	
	A $\frac{C}{27}$	0		
	в <u>С</u>	0		
	9			
	C 9 <i>C</i>	0		
	D 27 <i>C</i>	0		
				l

Turn over ►

2 0	2 0 A parallel plate capacitor is connected across a battery and the energy stored in the capacitor is F			
	Without disconnecting the battery, the separation of the plates is halved.			
	What is the energy now stored in the capacitor?		[1 mark]	
	A 0.5 <i>E</i>	0		
	B <i>E</i>	0		
	C 2 <i>E</i>	0		
	D 4 <i>E</i>	0		
2 1	A fully charged capacitor of ca	pacitance $2.0~\mathrm{mF}$ discharges through a $15~\mathrm{k}\Omega$ resis	tor.	
	What fraction of the stored ene	ergy remains after 1.0 minute?	[1 mark]	
	A $\frac{1}{4}$	0		
	B $\frac{1}{e^2}$	0		
	c $\frac{1}{16}$	0		
	D $\frac{1}{e^4}$	0		
22	A horizontal wire of length 0.25 m carrying a current of 3.0 A is perpendicular to a magnetic field. The mass of the wire is 3.0×10^{-3} kg and the weight of the wire is supported in equilibrium by the magnetic field.			
	What is the flux density of the	magnetic field?	[1 mark]	
	A 2.6 T	0		
	B $3.9 \times 10^{-2} \text{ T}$	0		
	C $2.2 \times 10^{-2} \text{ T}$	0		
	D $4.0 \times 10^{-3} \text{ T}$	0		

