

A diffraction grating is illuminated normally with light of wavelength 6.5×10^{-7} m When a screen is 1.5 m from the grating, the distance between the zero and first-order maxima on the screen is 0.30 m

What is the number of lines per mm of the diffraction grating?

A 3.3×10^{-6}

0

B 3.3×10^{-3}

0

C 3.0×10^2

0

D 3.0×10^5

0

(Total 1 mark)

2

In a diffraction-grating experiment the maxima are produced on a screen.

What causes the separation of the maxima of the diffraction pattern to decrease?

A using light with a longer wavelength

- 0
- **B** increasing the distance between the screen and grating
- 0
- **C** increasing the distance between the source and grating
- 0

D using a grating with a greater slit separation

0

(Total 1 mark)

(a) Explain what is meant by a progressive wave.

(2)

(b) **Figure 1** shows the variation with time of the displacement of one point in a progressive wave.

Figure 1

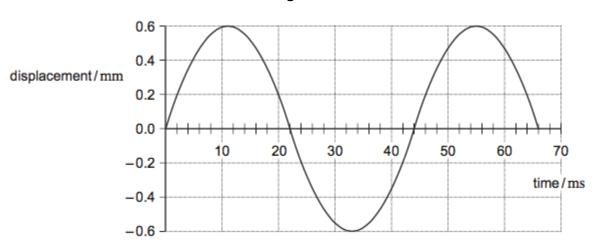
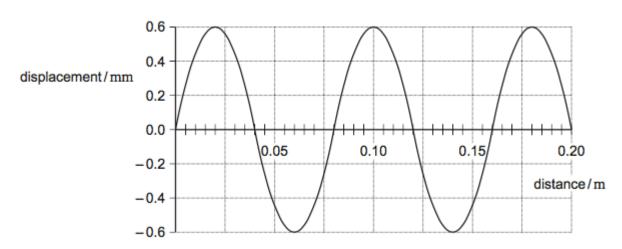



Figure 2 shows the variation of displacement of the same wave with distance.

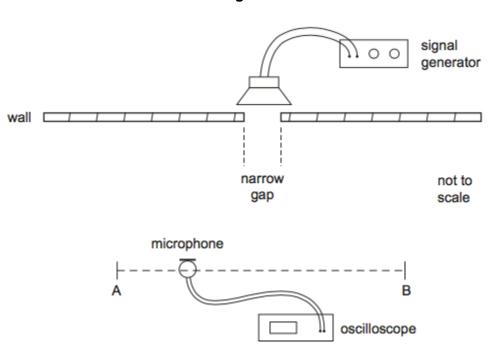
Figure 2

Use Figures 1 and 2 to determine

(i) the amplitude of the wave

amplitude = _____ mm

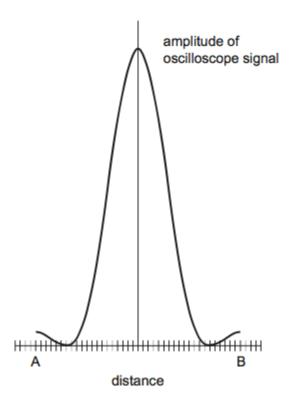
	wavelength =	m
ii) the frequency of the wave		
	frequency =	Hz
v) the speed of the wave		
	sneed –	m s ⁻¹
	speed =	m s ⁻¹
Which of the following statements Place a tick (✔) in the right-hand		
	s apply?	
lace a tick (✓) in the right-hand	s apply? column for each correct statemen	
	s apply? column for each correct statemen	
Place a tick (✓) in the right-hand	s apply? column for each correct statemen	
Place a tick () in the right-hand sound waves are transverse sound waves are longitudinal	s apply? column for each correct statemen	


the wavelength of the wave

(ii)

(d) In an investigation, a single loudspeaker is positioned behind a wall with a narrow gap as shown in **Figure 3**.

A microphone attached to an oscilloscope enables changes in the amplitude of the sound to be determined for different positions of the microphone.


Figure 3

The amplitude of sound is recorded as the microphone position is moved along the line AB a large distance from the gap.

The result of the measurements is shown in **Figure 4**.

Figure 4

The signal generator is adjusted so that sound waves of the same amplitude but of a higher frequency are emitted by the loudspeaker. The investigation using the apparatus shown in **Figure 3** is then repeated.

Explain the effect this has on **Figure 4**.

•	_		

(Total 10 marks)

(3)