A conducting sphere holding a charge of $+10 \mu \mathrm{C}$ is placed centrally inside a second uncharged conducting sphere.

Which diagram shows the electric field lines for the system?


2 The diagram shows the path of an $\alpha$ particle deflected by the nucleus of an atom. Point P on the path is the point of closest approach of the $\alpha$ particle to the nucleus.


Which of the following statements about the $\alpha$ particle on this path is correct?

A Its acceleration is zero at P. $x$


B Its kinetic energy is greatest at $P$. $X$


C Its potential energy is least at P. X
D Its speed is least at $P$.

(Total 1 mark)
3 (a) State, in words, Coulomb's law.

(b) The graph shows how the electric potential, $V$, varies with $\frac{1}{r}$, where $r$ is the distance from a point charge $Q$.


State what can be deduced from the graph about how $V$ depends on $r$ and explain why all the values of $V$ on the graph are negative.


-     - le becaure chorge is -re so work dore
 rescore
attraction.
charge
b aluray

(c) (i) Use data from the graph to show that the magnitude of $Q$ is about 30 nC .

$$
\begin{aligned}
V^{\text {(c) }} \frac{1}{4 \pi \varepsilon_{0}} \frac{Q}{r} \Rightarrow Q=V_{r \times 4} \quad 4 \pi \varepsilon_{0} & =2.8 \times 10^{-8 C} \\
& \approx 30 n C
\end{aligned}
$$

(ii) $\mathrm{A}+60 \mathrm{nC}$ charge is moved from a point where $r=0.20 \mathrm{~m}$ to a point where $r=0.50 \mathrm{~m}$. Calculate the work done.

$$
\begin{align*}
& \Delta \omega=Q \Delta V \quad \Delta V=730 \\
& r=2 \Rightarrow \frac{1}{r}=\frac{1}{2} \rightarrow V=.500 \\
& \Delta w \cdot 60 \times 10^{-9} \times 750 \\
& r=0.2 \Rightarrow \frac{1}{r}=5 \Rightarrow U=-1250 \\
& \text { work done } 4.5 \times 10^{-5} \text {, } \tag{2}
\end{align*}
$$

(iii) Calculate the electric field strength at the point where $r=0.40 \mathrm{~m}$.

$$
E=\frac{1}{k \pi} \varepsilon_{8} \frac{Q}{r^{2}} \stackrel{28, c}{ }-1600
$$

electric field strength $\qquad$ $\mathrm{V} \mathrm{m}^{-1}$
(Total 10 marks)
4
(a) State, in words, Coulomb's law.
$\qquad$
$\qquad$
$\qquad$
$\qquad$
(b) The diagram below shows two point charges of +4.0 nC and +6.0 nC which are 68 mm apart.

(i) Sketch on the diagram above the pattern of the electric field surrounding the charges.
(ii) Calculate the magnitude of the electrostatic force acting on the +4.0 nC charge.

$$
F=\frac{\hbar \pi(\pi)}{4 \pi D_{0}\left(68 \times 10^{5}\right)^{2}}
$$



(ii) State the direction of the resultant electric field at the mid-point of the line joining the charges.

## 1 <br> C

## 2

D
(a) force between two (point) charges is
proportional to product of charges $\checkmark$ inversely proportional to square of distance between the charges $\checkmark$ Mention of force is essential, otherwise no marks.

Condone "proportional to charges".
Do not allow "square of radius" when radius is undefined.
Award full credit for equation with all terms defined.
(b) $\quad V$ is inversely proportional to $r[$ or $V \propto(-) 1 / r] \checkmark$ ( $V$ has negative values) because charge is negative [or because force is attractive on + charge placed near it
or because electric potential is + for + charge and - for - charge] $\checkmark$ potential is defined to be zero at infinity $\checkmark$

$$
\text { Allow } V \times r=\text { constant for } 1^{\text {st }} \text { mark. }
$$

$\max 2$
(c) $\quad$ (i) $\quad Q\left(=4 \pi \varepsilon_{0} r V\right)=4 \pi \varepsilon_{0} \times 0.125 \times 2000$

OR gradient $=Q / 4 \pi \varepsilon_{0}=2000 / 8 \checkmark$
(for example, using any pair of values from graph) $\checkmark$

$$
=28(27.8)( \pm 1)(n C) \checkmark
$$

(gives $Q=28(27.8) \pm 1(n C) \checkmark$
(ii) at $r=0.20 \mathrm{~m} V=-1250 \mathrm{~V}$ and at $r=0.50 \mathrm{~m} V=-500 \mathrm{~V}$
so pd $\Delta V=-500-(-1250)=750(V) \checkmark$
work done $\Delta W(=Q \Delta V)=60 \times 10^{-9} \times 750$

$$
=4.5(0) \times 10^{-5}(\mathrm{~J})(45 \mu \mathrm{~J}) \checkmark
$$

(final answer could be between 3.9 and $5.1 \times 10^{-5}$ )
Allow tolerance of $\pm 50 \mathrm{~V}$ on graph readings.
[Alternative for $1^{\text {st }}$ mark:
$\Delta V=\frac{27.8 \times 10^{-9}}{4 \pi \varepsilon_{0}} \times\left(\frac{1}{0.2}-\frac{1}{0.5}\right)$ (or similar substitution using 60 nC
instead of 27.8 nC :
use of 60 nC gives $\Delta V=1620 \mathrm{~V}$ ) ]
(iii)
$E\left(=\frac{Q}{4 \pi \varepsilon_{0} r^{2}}\right)=\frac{27.8 \times 10^{-9}}{4 \pi \varepsilon_{0} \times 0.40^{2}} \checkmark=1600(1560)\left(\mathrm{V} \mathrm{m}^{-1}\right) \checkmark$
[or deduce $E=\frac{V}{r}$ by combining $E=\frac{Q}{4 \pi \varepsilon_{0} r^{2}}$ with $V=\frac{Q}{4 \pi \varepsilon_{0} r} \checkmark$
from graph $\left.E=\frac{625 \pm 50}{0.40}=1600(1560 \pm 130)\left(\mathrm{V} \mathrm{m}^{-1}\right) \checkmark\right]$
Use of $Q=30 n C$ gives $1690\left(\mathrm{~V} \mathrm{~m}^{-1}\right)$.
Allow ecf from $Q$ value in (i).
If $Q=60 n C$ is used here, no marks to be awarded.

4 (a) force between two (point) charges is proportional to (product of) charges $\checkmark$ and inversely proportional to the square of their distance apart $\downarrow$

Formula not acceptable. Accept "charged particles" for charge s. Accept separation for distance apart.
(b) (i) lines with arrows radiating outwards from each charge $\checkmark$ more lines associated with 6 nC charge than with $4 \mathrm{nC} \checkmark$ lines start radially and become non-radial with correct curvature further away from each charge $\checkmark$ correct asymmetric pattern (with neutral pt closer to 4 nC charge) $\checkmark$
(ii) force $\left(=\frac{Q_{1} Q_{2}}{4 \pi \varepsilon_{0} r^{2}}\right)=\frac{4.0 \times 10^{-9} \times 6.0 \times 10^{-9}}{4 \pi \times 8.85 \times 10^{-12} \times\left(68 \times 10^{-3}\right)^{2}}$

$$
=4.6(7) \times 10^{-5}(\mathrm{~N})
$$

Treat substitution errors such as $10^{-6}$ (instead of $10^{-9}$ ) as $A E$ with ECF available.
(c) (i) $\quad E_{4}=\frac{4.0 \times 10^{-9}}{4 \pi \varepsilon_{0} \times\left(34 \times 10^{-3}\right)^{2}}\left(=3.11 \times 10^{4} \mathrm{~V} \mathrm{~m}^{-1}\right)$ (to the right)

For both of $1^{\text {st }}$ two marks to be awarded, substitution for either or both of $E_{4}$ or $E_{6}$ (or a substitution in an expression for $E_{6}-E_{4}$ ) must be shown.

$$
E_{6}\left(=\frac{6.0 \times 10^{-9}}{4 \pi \varepsilon_{0} \times\left(34 \times 10^{-3}\right)^{2}}\right)=\left(4.67 \times 10^{4} \mathrm{Vm}^{-1}\right) \text { (to the left) }
$$

If no substitution is shown, but evaluation is correct for $E_{4}$ and $E_{6}$, award one of $1^{\text {st }}$ two marks.

$$
E_{\text {resultant }}=(4.67-3.11) \times 10^{4}=1.5(6) \times 10^{4} \checkmark
$$

$$
\text { Unit: } \mathrm{V} \mathrm{~m}^{-1}\left(\text { or } \mathrm{N} \mathrm{C}^{-1}\right) \checkmark
$$

Use of $r=68 \times 10^{-3}$ is a physics error with no ECF. Unit mark is independent.
(ii) direction: towards 4 nC charge or to the left $\checkmark$

