| 1 | 6 | Which diagram shows lines of equipotential in steps of equal potential difference near an |
| :--- | :--- | :--- | isolated point charge?

A

C

B

D

A \square
B O
C

D \qquad

| 1 | 7 | A positive charge of $2.0 \times 10^{-4} \mathrm{C}$ is placed in an electric field at a point where the potential |
| :--- | :--- | :--- | is +500 V .

What is the potential energy of the system?

A $1.0 \times 10^{-1} \mathrm{~J}$ \square
B $1.0 \times 10^{-1} \mathrm{~J} \mathrm{C}^{-1}$ \square
C $4.0 \times 10^{-7} \mathrm{~J}$

D $4.0 \times 10^{-7} \mathrm{~J} \mathrm{C}^{-1}$

18 Two charges \mathbf{P} and \mathbf{Q} are 100 mm apart. \mathbf{X} is a point on the line between \mathbf{P} and \mathbf{Q} where the electric potential is 0 V .

What is the distance from \mathbf{P} to \mathbf{X} ?

A 33 mm

B 40 mm

C 60 mm

D 67 mm \square

| 1 | 4 |
| :--- | :--- | The diagram shows a particle with charge $+Q$ and a particle with charge $-Q$ separated by a distance d.

The particles exert a force F on each other.

An additional charge of $+2 Q$ is then given to each particle and their separation is increased to $2 d$.

What is the force that now acts between the particles?

A an attractive force of $\frac{9}{2} F$

B an attractive force of $\frac{9}{4} F$

C a repulsive force of $\frac{3}{2} F$

D a repulsive force of $\frac{3}{4} F$ \square

| 1 | 5 |
| :--- | :--- | Two protons are separated by distance r.

The electrostatic force between the two protons is \mathbf{X} times the gravitational force between them.

What is the best estimate for \mathbf{X} ?

A 10^{20} \square
B 10^{28} \square
C 10^{36}
D 10^{42}

| 1 | 6 | Two parallel metal plates separated by a distance d have a potential difference V across |
| :--- | :--- | :--- | them. A particle with charge Q is placed midway between the plates.

What is the magnitude of the electrostatic force acting on the particle?

A zero

B $\frac{Q V}{2 d}$

c $\frac{Q V}{d}$

D $\frac{2 Q V}{d}$ \square
 \mathbf{X} is a point on the line between \mathbf{P} and \mathbf{Q} where the electric potential is zero.

What is the distance from \mathbf{P} to \mathbf{X} ?

A 40 mm \square
B 48 mm

C 60 mm

D 72 mm \square

1	8	An isolated spherical conductor is charged.

The conductor has a radius R and an electric potential V. The electric field strength at its surface is E.

Point \mathbf{T} is a distance $2 R$ from the surface.
What are the electric field strength and electric potential at \mathbf{T} ?

	Electric field strength	Electric potential
A	$\frac{E}{2}$	$\frac{V}{4}$
B	$\frac{E}{3}$	$\frac{V}{9}$
C	$\frac{E}{4}$	$\frac{V}{2}$
D	$\frac{E}{9}$	$\frac{V}{3}$

1	9

\mathbf{K} and \mathbf{L} are two points at a distance r_{1} from \mathbf{O}.
\mathbf{M} and \mathbf{N} are two points at a distance r_{2} from \mathbf{O}.

Which statement is true?

A The work done moving an electron from \mathbf{M} to \mathbf{K} is the same as that done moving an electron from \mathbf{K} to \mathbf{L}.

B The work done moving a positron from \mathbf{K} to \mathbf{M} is the same as that done moving an electron from \mathbf{K} to \mathbf{M}.

C No work is done moving an electron from \mathbf{M} to \mathbf{N}.

