

After this has been done the charge on each sphere is 52 nC.

04.1	Calculate the potential of one of the spheres. [3 marks]	Do not write outside the box
	potential = V	
04.2	The charged spheres in Figure 3 are at equilibrium.	
	Draw labelled arrows on Figure 3 to show the forces on sphere B . [2 marks]	
04.3	Suggest a solution to one problem involved in the measurement of <i>d</i> in Figure 3 . [2 marks]	
	Question 4 continues on the next page	

4.6 0 The student says that the gravitational force between the two spheres has no **significant** effect on the angle at which the spheres are in equilibrium.

Deduce with a calculation whether this statement is valid.

[2 marks]

Do not write outside the

box

1 5	$1.5~mJ$ of work is done when a charge of $30~\mu C$ is moved between two points, M and N, in an electric field.			
	What is the potential difference between M and N ?			
	[1 mark			
	A 20 mV	0		
	B 20 V	0		
	C 45 V	0		
	D 50 V	0		
16	An electric field acts into the plane of the paper. An electron enters the field at 90° to the field lines.			
	The force on the electron is	[1 mark]		
	A zero.	0		
	B along the direction of the field.	0		
	C at 90° to the field.	0		
	D opposite to the direction of the field.	0		
1 7	The ionisation potential for the atoms of a gas is V . Electrons of mass m and charge e travelling at a speed v can just cause ionisation of atoms in the gas.			
	What is <i>v</i> ?	[1 mark]		
	A $\frac{eV}{2m}$	0		
	$\mathbf{B} \;\; \frac{2eV}{m}$	0		
	c $\sqrt{\frac{eV}{2m}}$	0		
	D $\sqrt{\frac{2eV}{m}}$	0		

Do not write outside the box

