Figure 3 shows an arrangement used to investigate the repulsive forces between two identical charged conducting spheres.
The spheres are suspended by non-conducting thread.
Figure 3

Each sphere has a mass of $3.2 \times 10^{-3} \mathrm{~kg}$ and a radius of 20 mm .
The distance d is 40 mm .
The capacitance of a sphere of radius r is $4 \pi \varepsilon_{0} r$.
Each sphere is charged by connecting it briefly to the positive terminal of a high-voltage supply, the other terminal of which is at 0 V .
After this has been done the charge on each sphere is 52 nC .

| $\mathbf{0}$ | $\mathbf{4} \cdot \mathbf{1}$ Calculate the potential of one of the spheres. |
| :--- | :--- | :--- |

potential =
\qquad

$\mathbf{0}$	$\mathbf{4}$	$\mathbf{2}$ The charged spheres in Figure $\mathbf{3}$ are at equilibrium.

Draw labelled arrows on Figure 3 to show the forces on sphere B.

0	4	3	Suggest a solution to one problem involved in the measurement of d in Figure 3.

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Question 4 continues on the next page

| $\mathbf{0}$ | $\mathbf{4}$ | .4 |
| :--- | :--- | :--- | Show that the magnitude of the electrostatic force on each sphere is about $4 \times 10^{-3} \mathrm{~N}$.

 The student records θ as 7°.

Discuss whether this measurement is consistent with the other data in this investigation.
\qquad
\qquad

| 0 | $\mathbf{4} .6$ | The student says that the gravitational force between the two spheres has no |
| :--- | :--- | :--- | significant effect on the angle at which the spheres are in equilibrium.

13 When an electron is moving at a speed v perpendicular to a uniform magnetic field of flux density B, it follows a path of radius R.
A second electron moves at a speed $\frac{v}{2}$ perpendicular to a uniform magnetic field of flux density $4 B$.

What is the radius of the path of the second electron?

A $\frac{R}{8}$

B $\frac{R}{4}$

C $2 R$ \square

D $8 R$ \square

14 A small object of mass m has a charge Q. The object remains stationary in an evacuated space between two horizontal plates. The plates are separated by a distance d and the potential difference between the plates is V.

What is V ?

A $\frac{m Q g}{d}$

B $\frac{m d g}{Q}$

c $\frac{m Q}{d}$

D $\frac{m d}{Q}$

 an electric field.

What is the potential difference between \mathbf{M} and \mathbf{N} ?

A 20 mV

B 20 V \square
C 45 V \square
D 50 V

16 An electric field acts into the plane of the paper. An electron enters the field at 90° to the field lines.

The force on the electron is

A zero.

B along the direction of the field. \square
C at 90° to the field.

D opposite to the direction of the field. \square

17 The ionisation potential for the atoms of a gas is V. Electrons of mass m and charge e travelling at a speed v can just cause ionisation of atoms in the gas.

What is v ?

A $\frac{e V}{2 m}$

B $\frac{2 e V}{m}$ \square

C $\sqrt{\frac{e V}{2 m}}$

D $\sqrt{\frac{2 e V}{m}}$ \square

