AQA 2020 P2 22

Do not write outside the

Figure 11 shows alpha particles all travelling in the same direction at the same speed. The alpha particles are scattered by a gold ($^{197}_{79}$ Au) nucleus. The path of alpha particle **1** is shown.

Figure 11

0 5 . 1 State the fundamental force involved when alpha particle 1 is scattered by the nucleus in **Figure 11**.

[1 mark]

Draw an arrow at position **X** on **Figure 11** to show the direction of the rate of change in momentum of alpha particle **1**

[1 mark]

0 5.3	Suggest one of the alpha particles in Figure 11 which may be deflected downwards with a scattering angle of 90°
	Justify your answer. [2 marks]
	alpha particle number =
0 5.4	Alpha particle 4 comes to rest at a distance of $5.5\times10^{-14}~\rm m$ from the centre of the $^{197}_{~79}Au$ nucleus.
	Calculate the speed of alpha particle 4 when it is at a large distance from the nucleus. Ignore relativistic effects.
	mass of alpha particle = $6.8 \times 10^{-27} \ kg$ [3 marks]
	[c mana]
	$speed = \underline{\hspace{1cm}} m \; s^{-1}$
	Question 5 continues on the next page

Turn over ►

Do not wri	te
outside th	ϵ

0 5 . 5	The nuclear radius of $^{197}_{79}Au$ is $6.98\times10^{-15}~m.$
	Calculate the nuclear radius of $^{107}_{\ \ 47}{\rm Ag}.$ [2 marks]
	radius = m
5.6	All nuclei have approximately the same density.
	State one conclusion about the nucleons in a nucleus that can be deduced from this fact. [1 mark]

1 3 What is the angular speed of a satellite in a geostationary orbit around the Earth?

[1 mark]

- **A** $1.2 \times 10^{-5} \text{ rad s}^{-1}$
- 0
- **B** $7.3 \times 10^{-5} \text{ rad s}^{-1}$

0

C $4.4 \times 10^{-3} \text{ rad s}^{-1}$

0

D $2.6 \times 10^{-1} \text{ rad s}^{-1}$

0

Two fixed charges of magnitude +Q and +3Q repel each other with a force F. An additional charge of -2Q is given to each charge.

What are the magnitude and the direction of the force between the charges?

[1 mark]

	Magnitude of force	Direction of force	
A	$\frac{F}{3}$	repulsive	0
В	5 <i>F</i>	attractive	0
С	5F	repulsive	0
D	$\frac{F}{3}$	attractive	0

Turn over for the next question

Do not write outside the

1 5

At a distance L from a fixed point charge, the electric field strength is E and the electric potential is V.

What are the electric field strength and the electric potential at a distance 3L from the charge?

[1 mark]

	Electric field strength	Electric potential	
Α	$\frac{E}{3}$	$\frac{V}{9}$	0
В	$\frac{E}{3}$	$\frac{V}{3}$	0
С	$\frac{E}{9}$	$\frac{V}{3}$	0
D	$\frac{E}{9}$	$\frac{V}{9}$	0

