Figure 11 shows alpha particles all travelling in the same direction at the same speed.
The alpha particles are scattered by a gold (${ }_{79}^{197} \mathrm{Au}$) nucleus.
The path of alpha particle $\mathbf{1}$ is shown.
Figure 11

| 0 | 5 | 1 |
| :--- | :--- | :--- | in Figure 11.

\qquad

| 0 | 5 | 2 | Draw an arrow at position X on Figure 11 to show the direction of the rate of change |
| :--- | :--- | :--- | :--- | in momentum of alpha particle $\mathbf{1}$

| 0 | 5 | 3 | Suggest one of the alpha particles in Figure 11 which may be deflected downwards |
| :--- | :--- | :--- | :--- | with a scattering angle of 90°

Justify your answer.
alpha particle number $=$ \qquad
\qquad
\qquad
\qquad
\qquad

| 0 | $\mathbf{5}$ | $\mathbf{4}$ Alpha particle $\mathbf{4}$ comes to rest at a distance of $5.5 \times 10^{-14} \mathrm{~m}$ from the centre of the |
| :--- | :--- | :--- | :--- | ${ }_{79}^{197} \mathrm{Au}$ nucleus.

Calculate the speed of alpha particle $\mathbf{4}$ when it is at a large distance from the nucleus. Ignore relativistic effects.

$$
\text { mass of alpha particle }=6.8 \times 10^{-27} \mathrm{~kg}
$$

\qquad $\mathrm{m} \mathrm{s}^{-1}$

Calculate the nuclear radius of ${ }_{47}^{107} \mathrm{Ag}$.
radius $=$ \qquad m

0	5	6	All nuclei have approximately the same density.

State one conclusion about the nucleons in a nucleus that can be deduced from this fact.
\qquad
\qquad
\qquad

$\mathbf{1}$	$\mathbf{3}$ What is the angular speed of a satellite in a geostationary orbit around the Earth?

A $1.2 \times 10^{-5} \mathrm{rad} \mathrm{s}^{-1}$

B $7.3 \times 10^{-5} \mathrm{rad} \mathrm{s}^{-1}$

C $4.4 \times 10^{-3} \mathrm{rad} \mathrm{s}^{-1}$

D $2.6 \times 10^{-1} \mathrm{rad} \mathrm{s}^{-1}$ \square

14 Two fixed charges of magnitude $+Q$ and $+3 Q$ repel each other with a force F. An additional charge of $-2 Q$ is given to each charge.

What are the magnitude and the direction of the force between the charges?

	Magnitude of force	Direction of force
A	$\frac{F}{3}$	repulsive
B	$5 F$	attractive
C	$5 F$	repulsive
D	$\frac{F}{3}$	attractive

Turn over for the next question

| 1 | 5 | At a distance L from a fixed point charge, the electric field strength is E and the electric |
| :--- | :--- | :--- | potential is V.

What are the electric field strength and the electric potential at a distance $3 L$ from the charge?

	Electric field strength	Electric potential
A	$\frac{E}{3}$	$\frac{V}{9}$
B	$\frac{E}{3}$	$\frac{V}{3}$
C	$\frac{E}{9}$	$\frac{V}{3}$
D	$\frac{E}{9}$	$\frac{V}{9}$

