1 A charged spherical conductor has a radius r. An electric field of strength E exists at the surface due to the charge.

What is the potential of the spherical conductor?

A $r^{2} E$ \square
B $r E^{2}$ \square
C $\frac{E}{r}$

D $r E$ \square
(Total 1 mark)
2 A particle of mass m and charge q is accelerated through a potential difference V over a distance d.

What is the average acceleration of the particle?
A $\frac{q V}{m d}$
0
B $\frac{m V}{q d}$
0

C $\frac{V}{m q d}$

D $\frac{d V}{m q}$
0
(Total 1 mark)

3 An α particle with an initial kinetic energy of 4.9 MeV is directed towards the centre of a gold nucleus of radius R which contains 79 protons. The α particle is brought to rest at point \mathbf{S}, a distance r from the centre of the nucleus as shown in the diagram below.

(a) Calculate the electric potential energy, in J , of the α particle at point \mathbf{S}.
electric potential energy = \qquad J
(b) Calculate r, the distance of closest approach of the α particle to the nucleus.

$$
r=
$$

\qquad m
(c) Determine the number of nucleons in the gold nucleus.

$$
\begin{aligned}
& R \text {, radius of the gold nucleus }=7.16 \times 10^{-15} \mathrm{~m} \\
& R_{0}=1.23 \times 10^{-15} \mathrm{~m}
\end{aligned}
$$

number of nucleons $=$ \qquad
(d) The target nucleus is changed to one that has fewer protons. The a particle is given the same initial kinetic energy.

Explain, without further calculation, any changes that occur to the distance r. Ignore any recoil effects.
\qquad
\qquad
\qquad
\qquad

4 (a) Describe how a beam of fast moving electrons is produced in the cathode ray tube of an oscilloscope.
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
(b) The figure below shows the cathode ray tube of an oscilloscope. The details of how the beam of electrons is produced are not shown.

The electron beam passes between two horizontal metal plates and goes on to strike a fluorescent screen at the end of the tube. The plates are 0.040 m long and are separated by a gap of 0.015 m . A potential difference of 270 V is maintained between the plates.An individual electron takes $1.5 \times 10^{-9} \mathrm{~s}$ to pass between the plates. The distance between the right-hand edge of the plates and the fluorescent screen is 0.20 m .
(i) Show that the vertical acceleration of an electron as it passes between the horizontal metal plates is approximately $3.2 \times 10^{15} \mathrm{~ms}^{-2}$.
(ii) Show that the vertical distance travelled by an electron as it passes between the horizontal metal plates is approximately 3.6 mm .
(iii) Show that the vertical component of velocity achieved by an electron in the beam by the time it reaches the end of the plates is approximately $4.7 \times 10^{6} \mathrm{~m} \mathrm{~s}^{-1}$.
(iv) Calculate the vertical displacement, y, of the electron beam from the centre of the screen. Give your answer in m .
\qquad m

