Figure 1

(a) The table shows the operating conditions for the lamps when they are at normal brightness.

Lamps	Operating voltage / V	Power / W
A and C	6.0	6.0
B and D	3.5	4.1

The student observes that two of the lamps are at their normal brightness.
Assume that any changes in resistance of the lamps are negligible.
Determine which two lamps are at their normal brightness.
Use calculations to support your answer.

(b) The student connects another lamp \mathbf{E} in the circuit as shown in Figure 2.

Lamp \mathbf{E} is identical to lamps \mathbf{A} and \mathbf{C}.
Figure 2

Explain what the student would observe regarding the brightness of the lamps.
Refer to potential differences across lamp \mathbf{E} in your answer.

\qquad
\qquad
\qquad
\qquad
\qquad
c) Lamp B in Figure 2 fails so that it no longer conducts. This change does not affect the mauve resistance of the other lamps.
Deduce the effect on the current in the battery. 6Ω \forall (年)

Use calculations to support your answer.
So we now have:

$$
\begin{aligned}
& L_{1}+1 \\
& R_{T}=7 \Omega \Rightarrow I=9 \\
&=1.22 K
\end{aligned}
$$

So now compare with fig all working. We can in nor E since no I flows thought it.

$$
\begin{aligned}
& \text { so behove } \\
& \text { so we hove } 3 \sim \\
& \sqrt[5]{65}= \\
& =\xrightarrow{4.5 \pi} \\
& \therefore I-\frac{9}{4.5}=2 A
\end{aligned}
$$

So. when B beats, curses reduces from 2A
 $1 \cdot 3 A$

2 The circuit diagram below shows a battery of electromotive force (emf) 12 V and internal resistance 1.5Ω connected to a 2.0Ω resistor in parallel with an unknown resistor, R. The battery supplies a current of 4.2 A .

(a) (i) Show that the potential difference (pd) across the internal resistance is 6.3 V .

$$
v= \pm \pi=4=2 \cdot 5
$$

(ii) Calculate the pd across the 2.0Ω resistor.

$$
12-6.3=5.70
$$

pd
(iii) Calculate the current in the 2.0Ω resistor.
(iv) Determine the current in R.

$$
4 \cdot 2-2 \cdot 85
$$

(v) Calculate the resistance of R.

$$
R=V_{I}
$$

(b) The battery converts chemical energy into electrical energy that is then dissipated in the internal resistance and the two external resistors.
(i) Using appropriate data values that you have calculated, complete the following table by calculating the rate of energy dissipation in each resistor.

resistor	rate of energy dissipation $/ w$
internal resistance	$P=7^{2} R=4 \cdot 2 \times 2 \times 2$
2.0Ω	$P=7^{2} R=2.35^{2} \times 2$
R	$P=1.36^{2} \times 4 \cdot 2$

3 Figure 1 shows data for the variation of the power output of a photovoltaic cell with load resistance. The data were obtained by placing the cell in sunlight. The intensity of the energy from the Sun incident on the surface of the cell was constant.

Figure 1

(a) Use data from Figure 1 to calculate the current in the load at the peak power. Peak loud at $R=300 \mathrm{~N}$ (g mph) which is at 107 mW

(3)
(b) The intensity of the Sun's radiation incident on the cell is $730 \mathrm{~W} \mathrm{~m}^{-2}$. The active area of the cell has dimensions of $60 \mathrm{~mm} \times 60 \mathrm{~mm}$.

(c) The average wavelength of the light incident on the cell is 500 nm . Estimate the number of photons incident on the active area of the cell every second.

$$
\begin{aligned}
E=h F & \Rightarrow \frac{h \times c}{\times \times} \\
& =\frac{196 \times 10^{-19}}{} \frac{3}{3}
\end{aligned}
$$

we need $\frac{2.63}{3.96 \times 10^{-19}}$ photon

(d) The measurements of the data in Figure 1 were carried out when the rays from the sun were incident at 90° to the surface of the panel. A householder wants to generate electrical energy using a number of solar panels to produce a particular power output.

Identify two pieces of information scientists could provide to inform the production of a suitable system.
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

