

02.2	When the voltmeter reading is zero:	
	$R_{\rm c} = R_{\rm c}$	
	$\frac{R_1}{R_2} = \frac{R_3}{R_4}$	
	2 4	
	where R_4 is the resistance of the copper wire between P and Q .	
	Determine, in $\Omega~{ m m}^{-1}$, the resistance per unit length of the copper wire.	
	$R_{\star} = 2.2 \text{ MO}$	
	$R_2 = 3.9 \text{ kO}$	
	$R_2 = 75 \Omega$	
		[2 marks]
	rocistopeo por unit longth —	$0 m^{-1}$
		\$2 111
0 2 . 3	The diameter d of the copper wire is approximately 0.4 mm.	
	Suggest:	
	• a suitable measuring instrument to accurately determine d	
	• how to reduce the effect of random error on the result for <i>d</i> .	
		[3 marks]

02.4	Determine the resistivity ρ of copper.	Do not write outside the box
	diameter d of the copper wire = 0.38 mm	
	[2 marks]	
	$\rho = $ Ωm	
	The copper wire is replaced with a constantan wire of diameter 0.38 mm .	
	$\frac{\text{resistivity of constantan}}{30} = 30$	
	resistivity of copper	
0 2 . 5	Suggest one change to the circuit to make the voltmeter read zero for the same value of x as in Question 02.1 .	
	[1 mark]	
02.6	Calculate, in mm , the diameter of a constantan wire that has the same resistance per unit length as the copper wire.	
	[1 mark]	
	diameter = mm	10
	END OF SECTION A	
L	Turn over ►]

ſ

29	A wire is made from a material of Young modulus E . The wire obeys Hooke's law. The wire has an unstretched length L and a cross-sectional area A . When a force is applied to the wire, the extension of the wire is e .	Do not write outside the box
	What is the elastic strain energy stored in the wire? [1 mark]
	$A \frac{AEe^2}{2L} $	
	B $\frac{L}{2Ae}$	
	c $\frac{Ae^2}{2EL}$	
	D $\frac{AEL}{2e}$	
30	As the temperature of a copper wire increases, its resistance [1 mark	1
	A remains constant.	
	B increases.	
	C decreases.	
	D remains constant at first and then decreases.	
3 1	A $12~\Omega$ resistor is connected across the terminals of a cell that has an emf of $2.0~V$ and an internal resistance of $4.0~\Omega.$	
	What is the terminal pd? [1 mark]
	A 0.50 V	
	B 0.75 V	
	C 1.30 V	
	D 1.50 V	
	Turn over	

box

3 3	The currents in the four wires obey the relationship $I_1 + I_2 + I_3 + I_4 = 0$	Do not write outside the box			
	$\begin{array}{c c} & I_4 \\ \hline I_1 & I_3 \\ \hline I_2 \\ \end{array}$				
	This relationship is an expression of the law of conservation of [1 mark]				
	A charge.				
	B energy.				
	C potential difference.				
	D power.				
34	A practical power supply provides a steady current I for a time t to an external circuit. The emf of the power supply during t is equivalent to [1 mark]				
	A the energy dissipated in the external circuit.				
	B the energy dissipated in the whole circuit.				
	C the energy dissipated in the whole circuit, divided by the product <i>It</i> . \Box				
	D the potential difference across the terminals of the power supply.	30			
	END OF QUESTIONS				

IB/M/Jun23/7407/1

