They are taken to the surface of a planet where the acceleration due to gravity is $\frac{g}{4}$.

What are the time periods of the pendulum and the mass-spring system on this planet? [1 mark]

	Simple pendulum	Mass–spring system	
Α	$\frac{T}{2}$	Т	0
в	2T	Т	0
с	$\frac{T}{2}$	2T	0
D	27	27	0

3 1

A particle of mass m is oscillating with simple harmonic motion. The period of the oscillation is T and the amplitude is A.

What is the maximum kinetic energy of the particle?

 \circ

0

 \bigcirc

0

[1 mark]

END OF QUESTIONS

25

Figure 6 shows a rotating spacecraft that is proposed to carry astronauts to Mars.	outside the box
Figure 6	
Figure 6 direction of rotation r_A floor r_A astronaut	
 The spacecraft consists of two parts A and B connected by a rigid cylindrical rod. When the spacecraft is travelling, A and B rotate at a constant angular speed about their common centre of mass O. <i>L</i> is the distance between the centre of mass of A and the centre of mass of B. <i>r</i>_A is the distance from O to the centre of mass of A. As the spacecraft rotates, a force that imitates the effect of gravity acts on an astronaut who is in contact with the floor. 	
Explain why. [2 marks]	
	Figure 6 Intertion of rotation Intertion of orbition Intertion of orbition Intertion of orbition The spacecraft consists of two parts A and B connected by a rigid cylindrical rod. When the spacecraft is travelling. A and B rotate at a constant angular speed about the spacecraft rotates, a force that imitates the effect of gravity acts on an astronaut who is in contact with the floor. Explain why. [2 marks]

		Do not write outside the
0 4 . 2	The forces exerted on A and B by the connecting rod have the same magnitude.	box
	$m_{\rm A}$ is the mass of A	
	Show, by considering the centripetal forces acting on A and B , that r_A is given by	
	$r_{\rm A} = \frac{m_{\rm B}L}{2}$	
	$m_{\rm A} + m_{\rm B}$ [2 marks]	
0 4 . 3	In this spacecraft $m_{\rm A} < m_{\rm B}$.	
	Deduce whether the centre of mass of A or the centre of mass of B rotates with a	
	greater linear speed. [2 marks]	
	Question 4 continues on the next page	

Turn over ►

11

The astronauts live in **A** and the cargo is stored in **B**.

When loaded,

 $m_{\rm A} = 1.32 \times 10^6 \, \rm kg$

 $m_{\rm B} = 3.30 \times 10^6 \, {\rm kg}.$

The spacecraft imitates the gravity of Mars where $g = 3.7 \text{ m s}^{-2}$.

Figure 7 shows a stress–strain curve for the metal used for the rigid rod.

Figure 7

[5 marks]

