2 The distance between the Sun and the Earth is $1.5 \times 10^{11} \mathrm{~m} \quad f=G M$

(Total 1 mark)
3 A spacecraft of mass $1.0 \times 10^{6} \mathrm{~kg}$ is in orbit around the Sun at a radius of $1.1 \times 10^{11} \mathrm{~m}$ C The spacecraft moves into a new orbit of radius $2.5 \times 10^{11} \mathrm{~m}$ around the Sun. What is the total change in gravitational potential energy of the spacecraft? $V=-G M$
A $-6.76 \times 10^{14} \mathrm{~J}$

$$
\begin{aligned}
& -G M\left(\frac{1}{r_{\text {final }}}-\frac{1}{r_{\text {initial }}}\right) \\
& \sin \\
& \text { multiply by } m \text { satellite }
\end{aligned}
$$

$$
\text { or: } G P E=\frac{-G M_{m}}{r} \Rightarrow-G M_{m}\left(\frac{1}{r_{r}}-\frac{1}{r_{i}}\right)
$$

(Total 1 mark)
Roding Valley High School

5 Charon is a moon of Pluto that has a mass equal to $\frac{1}{9}$ that of Pluto.
The distance between the centre of Pluto and the centre of Charon is d.
use grow field
\mathbf{X} is the point at which the resultant gravitational field due to Pluto and Charon is zero.

not to scale

What is the distance of \mathbf{X} from the centre of Pluto?
A $\frac{2}{9} d$
0
B $\frac{2}{3} d$

$=6 \beta A / 9$
r_{p}^{2}
$r_{c}{ }^{2}$
C $\frac{3}{4} d$

$\Rightarrow \quad \frac{1}{r_{p}^{2}}=\frac{1}{q\left(r_{c}^{2}\right)} \Rightarrow r_{p}^{2}=9 r_{c}{ }^{2}$
D $\frac{8}{9} d$
0
$\therefore r_{p}=3 r_{c}$
so distance from Pluto is 3 times distance from Charon. So its a ratio of 3:1 - ie we are breaking d into 4 equal parts so of which X is 3 lots away from. Pluto - so its $3 \mathrm{~d} / 4$
(Total 1 mark)
6
The distance between the Sun and Mars varies from $2.1 \times 10^{11} \mathrm{~m}$ to $2.5 \times 10^{11} \mathrm{~m}$.
When Mars is closest to the Sun, the force of gravitational attraction between them is F.
What is the force of gravitational attraction between them when they are furthest apart?
A $0.71 F$
4
Fore follow $\frac{1}{r^{2}}$
B $0.84 F$
0
distame uptry $\frac{2-5 \times 10^{11}}{2.1 \times 10^{11}}=1.1 \mathrm{~g} x$
C $1.2 F$
0
$\therefore \quad F \lambda$
$\frac{1}{(1 \cdot 19)^{2}}=0.205$
D $1.4 F$
0
(Total 1 mark)
(a) Define the gravitational potential at a point.

(b) Explain why gravitational potential is always negative.

\qquad
(c) Show that the magnitude of the gravitational potential at the Earth's surface due to the mass of the Earth is about $6.3 \times 10^{7} \mathrm{~J} \mathrm{~kg}^{-1}$.

$$
\begin{aligned}
V=-\frac{G N}{r} & r=6.37 \times 10^{6} \mathrm{~m} \\
& \therefore \frac{-6.67 \times 10^{-11} \times 5.97 \times 10^{24}}{6.37 \times 106}=-6.25 \times 10^{7} / \frac{\mathrm{K}}{(2)}
\end{aligned}
$$

(d) A satellite is launched into a geostationary orbit.

Describe and explain two features of a geostationary orbit.

\qquad
(e) The satellite has a mass of 1200 kg and the radius of its orbit is $4.23 \times 10^{7} \mathrm{~m}$.

Calculate the gain in gravitational potential energy of the satellite when it is placed into orbit from the Earth's surface.

d. there ne $-9.4 \times 10^{6}-6.25 \times 10^{7}=5.3 \times 10^{2}$
we hare 1200 ky so $5 \cdot 3 \times 10^{7} \times 1200$

$$
\text { gain in potential energy }=\quad 6.4 \times 10^{10} \mathrm{~J}
$$

(f) Impulse engines are used to place the satellite into an orbit with a longer period.

Discuss any changes this makes to the orbital motion of the satellite.

- will also have a lower velocity because as Vg increases, and assuming total energy is fixed, so Ek will decrease and hence veocity this only works though if the engines only apply a force directly along the radius of the rotation and so do not effect the satellites velocity
(Total 15 marks)

