		The thread breaks.		
		Explain the motion of the ball.		
				(2) (Total 9 marks)
2	The	distance between the Sun and the	e Earth is 1.5 × 10 ¹¹ m	
	Wha	t is the gravitational force exerted	on the Sun by the Earth?	
	A	$3.5 \times 10^{22} \text{ N}$	0	
	В	$1.7 \times 10^{26} \mathrm{N}$	0	
	С	$5.3 \times 10^{33} \text{ N}$	0	
	D	$8.9 \times 10^{50} \text{ N}$	0	
				(Total 1 mark)
3			orbit around the Sun at a radius of 1.1×10^{11} m of radius 2.5×10^{11} m around the Sun.	
	Wha	t is the total change in gravitationa	al potential energy of the spacecraft?	
	Α	–6.76 × 10 ¹⁴ J	0	
	В	−3.38 × 10 ¹⁴ J	0	
	С	$3.38 \times 10^{14} \text{ J}$	0	
	D	$6.76 \times 10^{14} \mathrm{J}$	0	

(Total 1 mark)

5

Charon is a moon of Pluto that has a mass equal to $\frac{1}{9}$ that of Pluto.

The distance between the centre of Pluto and the centre of Charon is d.

X is the point at which the resultant gravitational field due to Pluto and Charon is zero.

not to scale

What is the distance of **X** from the centre of Pluto?

 $A = \frac{2}{9}d$

0

 $\mathbf{B} = \frac{2}{3}a$

0

c $\frac{3}{4}d$

0

D $\frac{8}{9}d$

0

(Total 1 mark)

6

The distance between the Sun and Mars varies from 2.1×10^{11} m to 2.5×10^{11} m. When Mars is closest to the Sun, the force of gravitational attraction between them is F.

What is the force of gravitational attraction between them when they are furthest apart?

A 0.71*F*

0

B 0.84*F*

0

C 1.2*F*

0

D 1.4*F*

0

(Total 1 mark)

Explain why	gravitational pot	tential is alway	s negative.			
	e magnitude of t			ne Earth's surfa	ace due to the)
	e magnitude of t Earth is about 6.			ne Earth's surfa	ace due to the	e
				ne Earth's surfa	ace due to the	
mass of the I		.3 × 10 ⁷ J kg ^{−1}		ne Earth's surfa	ace due to the	
mass of the I	Earth is about 6.	3 × 10 ⁷ J kg ⁻¹	orbit.		ace due to the	
A satellite is Describe and	Earth is about 6. launched into a	3 × 10 ⁷ J kg ⁻¹ geostationary atures of a geo	orbit.	it.		
A satellite is Describe and	Earth is about 6. launched into a d explain two fea	3 × 10 ⁷ J kg ⁻¹ geostationary atures of a geo	orbit. estationary orb	it.		
A satellite is Describe and	Earth is about 6. Iaunched into a d explain two fea	geostationary	orbit.	it.		

TI	The satellite has a mass of 1200 kg and the radius of its orbit is 4.23×10^7 m.						
	alculate the gain in gravitational potential energy of the satellite when it is plac om the Earth's surface.	ed into orbit					
	gain in potential energy =	J					
lm	npulse engines are used to place the satellite into an orbit with a longer period.						
D	iscuss any changes this makes to the orbital motion of the satellite.						
_							
		(Total 15 ma					