$\mathbf{0}$	$\mathbf{3}$.	$\mathbf{1}$ Define gravitational potential at a point.

\qquad
\qquad
\qquad
\qquad

$\mathbf{0}$	$\mathbf{3}$.	2
2		

Figure 2

Explain how the equipotential surfaces in Figure $\mathbf{2}$ show that the gravitational field is not uniform.
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

| 0 | 3 | 3 |
| :--- | :--- | :--- | Calculate, using Figure 2, the escape velocity at the surface of the Moon.

$$
\text { radius of Moon }=1.74 \times 10^{6} \mathrm{~m}
$$

\qquad $\mathrm{m} \mathrm{s}^{-1}$

| 0 | 9 |
| :--- | :--- | What is the angular speed of a satellite in a geostationary orbit around the Earth?

A $1.2 \times 10^{-5} \mathrm{rad} \mathrm{s}^{-1}$ \square
B $7.3 \times 10^{-5} \mathrm{rad} \mathrm{s}^{-1}$ \square
C $4.2 \times 10^{-3} \mathrm{rad} \mathrm{s}^{-1}$ \square
D $2.6 \times 10^{-1} \mathrm{rad} \mathrm{s}^{-1}$ \square

| 1 | 0 |
| :--- | :--- | A planet of mass M and radius R rotates so quickly that material at its equator only just remains on its surface.

What is the period of rotation of the planet?

A $2 \pi \sqrt{\frac{R}{G M}}$

B $2 \pi \sqrt{\frac{G M}{R}}$

C $2 \pi \sqrt{\frac{R^{3}}{G M}}$

D $2 \pi \sqrt{\frac{G M}{R^{3}}}$ \square

$\mathbf{1}$	$\mathbf{1}$	Satellites \mathbf{N} and \mathbf{F} have the same mass and are in circular orbits about the same planet.

Which is greater for \mathbf{F} than for \mathbf{N} ?

A gravitational force on the satellite

B angular speed \square
C kinetic energy \square
D orbital period

| 1 | 2 |
| :--- | :--- | An object moves freely at 90° to the direction of a gravitational field.

The acceleration of the object is

A zero. \square
B opposite to the direction of the gravitational field. \square
C in the direction of the gravitational field. \square
D at 90° to the direction of the gravitational field. \square

