| $\mathbf{0}$ | $\mathbf{2}$ The Global Positioning System (GPS) uses satellites to support navigation on Earth. $. ~ . ~$ |
| :--- | :--- | :--- |

| $\mathbf{0}$ | $\mathbf{2}$. | $\mathbf{1}$ One GPS satellite is in a circular orbit at a height h above the surface of the Earth. |
| :--- | :--- | :--- | The Earth has mass M and radius R.

Show that the angular speed ω of the satellite is given by

$$
\omega=\sqrt{\frac{G M}{(R+h)^{3}}}
$$

$$
\Rightarrow \frac{\sigma^{3}}{r^{3}}=w^{2}
$$

$$
=\gg=
$$

| $\mathbf{0}$ | $\mathbf{2}$ | $\mathbf{2}$ Calculate the orbital period of the satellite when h equals $2.02 \times 10^{7} \mathrm{~m}$ |
| :--- | :--- | :--- | :--- | .

$$
R+h=2.657 \times 10_{N}
$$

orbital period $=$ \qquad s

| $\mathbf{0}$ | $\mathbf{2}$. | $\mathbf{3}$ Figure $\mathbf{3}$ shows the orbital plane of the satellite inclined at an angle to the equator. |
| :--- | :--- | :--- | :--- | \mathbf{X}, \mathbf{Y} and \mathbf{Z} are locations on the Earth.

\mathbf{X} is at the North Pole, \mathbf{Y} is on a high mountain and \mathbf{Z} is on the equator.
Figure 3

The satellite is to be launched from one of the locations.
State and explain which launch site \mathbf{X}, \mathbf{Y} or \mathbf{Z} minimises the amount of fuel required to send the satellite into its orbit.

Nearer to the equator the satellite has more itial Ek from the rotation of the earth. So Z is best
(y might be better but the mountain would have to high enough that the difference in potential is greater than the reduced Ek - but then hard to launch from a mountain)

Question 2 continues on the next page

Calculate the gravitational potential energy of the satellite when in the orbit in Question 02.2.

gravitational potential energy $=$ \qquad
 J

| $\mathbf{0}$ | $\mathbf{2}$ | $\mathbf{5}$ A different satellite is in a higher circular orbit. |
| :--- | :--- | :--- | :--- |

Explain how the linear speed of this satellite compares with the linear speed of the satellite in Question 02.1.

$$
\begin{aligned}
& v=\omega r \rightarrow \omega=\frac{v}{r} \\
& F=\frac{G M m}{r^{2}}=m \omega^{2} r
\end{aligned}
$$

$$
\frac{G M}{r^{3}}=\frac{v^{2}}{r^{2}} \rightarrow \frac{G M}{r}=v^{2}
$$

$$
\sqrt{\frac{G M}{r}}=v
$$

\qquad
\qquad

| $\mathbf{1}$ | $\mathbf{1}$ | The diagram shows gravitational equipotentials. Adjacent equipotentials are separated by |
| :--- | :--- | :--- | an equal gravitational potential difference V.

Which point has the greatest gravitational field strength?
A \square
gradient of potential is field strenghth
B

C 0
D

| 1 | 2 |
| :--- | :--- | A planet has radius R and density ρ. The gravitational field strength at the surface is g.

What is the gravitational field strength at the surface of a planet of radius $2 R$ and density 2ρ ?

$$
C=\frac{M}{V /} \quad \therefore N=V^{\text {vol }}
$$

A $2 g$
0
B $4 g$
C $8 g$
D $16 g$ 0
\square

$g\left[\int^{2} \frac{4}{3} \pi R^{3}\right.$

$\therefore 04 y$

| 1 | 3 | The diagram shows equipotential lines for a uniform gravitational field. The lines are |
| :--- | :--- | :--- | separated by 20 m .

horizontal comp does no work Kavainiaioal

An object of mass 4 kg is moved from \mathbf{P} to \mathbf{Q}.
What is the work done against gravity to move the object?

A 7.2 J

B 7.8 J
C 10.2 J
D 36 J

$$
\Delta W=
$$

$$
n \times \Delta V
$$

$$
7 \cdot z=4 \times \underline{12 \times 3}
$$

