0 2

The Global Positioning System (GPS) uses satellites to support navigation on Earth.

0 2 . 1

One GPS satellite is in a circular orbit at a height h above the surface of the Earth. The Earth has mass M and radius R.

Show that the angular speed $\boldsymbol{\omega}$ of the satellite is given by

$$\omega = \sqrt{\frac{GM}{\left(R+h\right)^3}}$$

[2 marks]

0 2.2 Calculate the orbital period of the satellite when h equals 2.02×10^7 m.

[2 marks]

orbital period = s

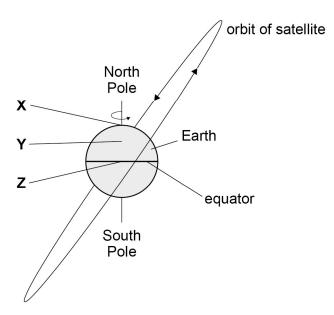

0 2 . 3

Figure 3 shows the orbital plane of the satellite inclined at an angle to the equator. **X**, **Y** and **Z** are locations on the Earth.

X is at the North Pole, **Y** is on a high mountain and **Z** is on the equator.

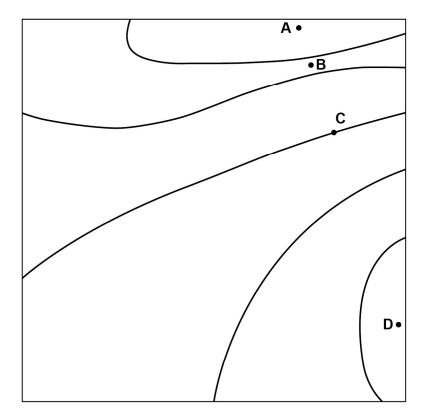
7

Figure 3

The satellite is to be launched from one of the locations.

State and explain which launch site **X**, **Y** or **Z** minimises the amount of fuel required to send the satellite into its orbit.

		[2 marks]


Question 2 continues on the next page

0 2 . 4	The satellite has a mass of $1630 \ \mathrm{kg}$.	
	Calculate the gravitational potential energy of the satellite when in the orbit in Question 02.2 .	
	Question 02.2. [2 marks]	
	gravitational potential energy = J	
0 2.5	A different satellite is in a higher circular orbit.	
	Explain how the linear speed of this satellite compares with the linear speed of the	
	satellite in Question 02.1.	
	[2 marks]	
		Г
		-
		L

Do not write outside the

 $oxed{1}$ The diagram shows gravitational equipotentials. Adjacent equipotentials are separated by an equal gravitational potential difference V.

Which point has the greatest gravitational field strength?

[1 mark]

- Α
- В
- С
- 0

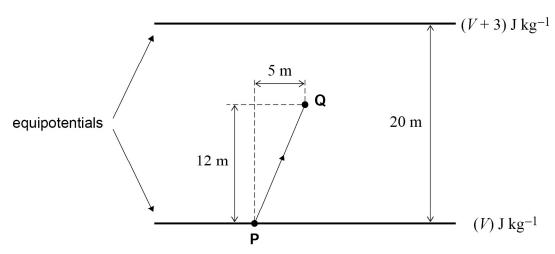
0

0

- D
- 0

Do not write outside the

1 2 A planet has radius R and density ρ . The gravitational field strength at the surface is g.


What is the gravitational field strength at the surface of a planet of radius 2R and density 2ρ ?

[1 mark]

- **A** 2g
- 0
- **B** 4g
- 0
- **C** 8g

- 0
- **D** 16g
- 0

gravitational potential

An object of mass 4~kg is moved from $\mbox{\bf P}$ to $\mbox{\bf Q}.$

What is the work done against gravity to move the object?

[1 mark]

- **A** 7.2 J
- 0
- **B** 7.8 J
- 0
- **C** 10.2 J
- 0
- **D** 36 J
- 0

Turn over ▶

