$\mathbf{0}$	$\mathbf{2}$ Figure 2 shows a moon of mass m in a circular orbit of radius r around a planet of

Figure 2

The moon has an orbital period T. T is related to r by

$$
T^{2}=k r^{3}
$$

where k is a constant for this planet.

| $\mathbf{0}$ | $\mathbf{2}$ |
| :--- | :--- | :--- |
| $\mathbf{1}$ | Show that $k=\frac{4 \pi^{2}}{G M}$ |

$\frac{G M m}{r^{2}}=\frac{m v^{2}}{r}$ and $v=\frac{2 \pi r}{T}$
$\frac{G M}{r}=v^{2}=\frac{4 \pi^{2} r^{2}}{T^{2}}$
$\frac{G M}{r^{3}}=\frac{4 \pi^{2}}{T^{2}} \rightarrow \frac{r^{3}}{G M}=\frac{T^{2}}{4 \pi^{2}}$
$\frac{4 \pi^{2}}{G M} r^{3}=T^{2}$

Table 2 gives data for two of the moons of the planet Uranus.
Table 2

Name	$\boldsymbol{T} /$ days	$\boldsymbol{r} / \mathbf{m}$
Miranda	1.41	1.29×10^{8}
Umbriel	4.14	\mathbf{X}

$\mathbf{0}$	$\mathbf{2} .2$	$\mathbf{2}$ Calculate the orbital radius X of Umbriel.

$$
\begin{aligned}
& \frac{T_{m}^{2}}{r_{m}^{3}}=\frac{T_{u}^{2}}{x_{u}^{3}}=\frac{T_{m}^{3} T_{m}^{2}}{T_{m}^{2}}=\left(r_{u}\right)^{2}
\end{aligned}
$$

| $\mathbf{0}$ | $\mathbf{2}$ | $\mathbf{3}$ Calculate the mass of Uranus. |
| :--- | :--- | :--- | :--- |

$$
\begin{aligned}
& \frac{4 \pi^{2}}{G M} r^{3}=T^{2} \Rightarrow \frac{4 \tau^{2} r^{3}}{G T^{2}}=M \\
& \text { best to use Miranda data at this } \\
& \text { point. } \\
& \frac{4 \pi^{2} \times\left(1.29 \times 10^{8}\right)^{3}}{6.67 \times 10^{-11} \times(1.41 \times 26 \times 60 \times 60)^{2}} \\
& \text { mass }= \\
& 8.55 \times 10 \\
& 25 \\
& \text { kg }
\end{aligned}
$$

Question 2 continues on the next page

Table 3 gives data for three more moons of Uranus.
Table 3

Name	Mass $/ \mathbf{k g}$	Diameter $/ \mathbf{m}$
Ariel	1.27×10^{21}	1.16×10^{6}
Oberon	3.03×10^{21}	1.52×10^{6}
Titania	3.49×10^{21}	1.58×10^{6}

| $\mathbf{0}$ | $\mathbf{2} .4$ Deduce which moon in Table 3 has the greatest escape velocity for an object on its |
| :--- | :--- | :--- | :--- | surface.

Assume the effect of Uranus is negligible.

note I used d instead of r - but this is ok because they are proportional to each other

| $\mathbf{0}$ | $\mathbf{2}$ | $\mathbf{5}$ A spring mechanism can project an object vertically to a maximum height of $1.0 \mathrm{~m}, ~$ |
| :--- | :--- | :--- | :--- | from the surface of the Earth.

Determine whether the same mechanism could project the same object vertically to a maximum height greater than 100 m when placed on the surface of Ariel.
[3 marks]

Name	Mass $/ \mathbf{k g}$	Diameter / m
Ariel	1.27×10^{21}	1.16×10^{6}

so

Turn over for the next question

| 1 | 2 |
| :--- | :--- | The graph shows how the gravitational potential V varies with the vertical distance d from the surface of the Earth.

A potential energy \square
B mass of the Earth \square
C magnitude of the gravitational constant
D magnitude of the gravitational field strength

| 1 | 3 |
| :--- | :--- | What is the angular speed of a satellite in a geostationary orbit around the Earth?

A $1.2 \times 10^{-5} \mathrm{rad} \mathrm{s}^{-1}$
B
$7.3 \times 10^{-5} \mathrm{rad} \mathrm{s}^{-1}$
C $4.4 \times 10^{-3} \mathrm{rad} \mathrm{s}^{-1}$
D $2.6 \times 10^{-1} \mathrm{rad} \mathrm{s}^{-1}$
\square
0
0
0
0 $\quad\left(y=\frac{2 / 1}{1}\right.$

$$
\Rightarrow \omega=\frac{2 \pi}{24 \times 60^{2}}
$$

Turn over for the next question

