

box

0 7

Do not write outside the box

7

3×10

[3 marks]

06

5

4-7-1

Table 3 gives data for three more moons of Uranus.

Table 3

Name	Mass / kg	Diameter / m
Ariel	1.27×10^{21}	1.16×10^{6}
Oberon	3.03×10^{21}	1.52×10^{6}
Titania	3.49×10^{21}	1.58×10^{6}

0 2 . 4

Deduce which moon in **Table 3** has the greatest escape velocity for an object on its surface. Assume the effect of Uranus is negligible.

50 60

note I used d instead of r - but this is ok because they are proportional to each other

5

0 2 .

Determine whether the same mechanism could project the same object vertically to a maximum height greater than 100 m when placed on the surface of Ariel.

			[3 marks]	
Name	Mass / kg	Diameter / m	if on earth we say its a unit test	
Ariel	1.27×10^{21}	1.16 × 10 ⁶	mass of 1Kg then the spring was $f_{\rm res} = 1 \sqrt{100}$	
$g = G - N$ $\begin{pmatrix} \lambda^2 \\ \lambda^2 \end{pmatrix}$		3=0:25 N/Kg	On Arial the Vg at the surface is GM/r - find g at the surface Then use mgh to get new h. (This is ok because over 100m or so the value of g isn't going to change much)	
>0 9.83 = mgh				
q	8 = 1× ->h =	0.25×h 39m		
Turn over for the next question				

Turn over ►

Do not write outside the

box

14

Do not write outside the box

1 2

The graph shows how the gravitational potential V varies with the vertical distance d from the surface of the Earth.

