
0 2

Figure 2 shows a moon of mass m in a circular orbit of radius r around a planet of mass M, where $m \leq M$.

Figure 2

The moon has an orbital period T. T is related to r by

$$T^2 = kr^3$$

where k is a constant for this planet.

0 2. 1 Show that
$$k = \frac{4\pi^2}{GM}$$

[3 marks]

Table 2 gives data for two of the moons of the planet Uranus.

Table 2

Name	T / days	<i>r</i> / m
Miranda	1.41	1.29×10^{8}
Umbriel	4.14	x

0 2 . 2	Calculate the orbital radius X of Umbriel.	
		[2 marks

orbital radius =	 m
orbital radiae	

0 2 . 3	Calculate the mass of Uranus.		
		[3	marks]

mass = kg

Question 2 continues on the next page

Turn over ▶

Table 3 gives data for three more moons of Uranus.

Table 3

Name	Mass / kg	Diameter / m
Ariel	1.27×10^{21}	1.16×10^{6}
Oberon	3.03×10^{21}	1.52×10^{6}
Titania	3.49×10^{21}	1.58×10^{6}

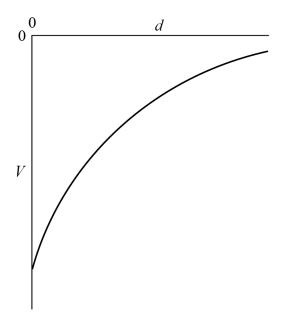
0 2 . 4 Deduce which moon in **Table 3** has the greatest escape velocity for an object on its surface.

Assume the effect of Uranus is negligible.

[3 marks]

Do not write
outside the
box

0 2 . 5	A spring mechanism can project an object vertically to a maximum height of $1.0\ \mathrm{m}$ from the surface of the Earth.
	Determine whether the same mechanism could project the same object vertically to a maximum height greater than $100~\mathrm{m}$ when placed on the surface of Ariel.
	[3 marks]


14

Turn over for the next question

Turn over ▶

The graph shows how the gravitational potential V varies with the vertical distance d from the surface of the Earth.

What does the gradient of the graph represent at the surface of the Earth?

[1 mark]

A potential energy

0

B mass of the Earth

0

C magnitude of the gravitational constant

0

D magnitude of the gravitational field strength

0

1 3 What is the angular speed of a satellite in a geostationary orbit around the Earth?

[1 mark]

A $1.2 \times 10^{-5} \text{ rad s}^{-1}$

0

B $7.3 \times 10^{-5} \text{ rad s}^{-1}$

0

 $\textbf{C}~4.4\times10^{-3}~rad~s^{-1}$

0

D $2.6 \times 10^{-1} \text{ rad s}^{-1}$

0

Turn over for the next question