chamber at a velocity of $80 \mathrm{~m} \mathrm{~s}^{-1}$ and is deflected into a circular path of radius 200 mm In the second chamber it follows a circular path of radius 100 mm

The particle leaves the second chamber at a speed of

A $20 \mathrm{~m} \mathrm{~s}^{-1}$
B $\quad 40 \mathrm{~m} \mathrm{~s}^{-1}$
C $80 \mathrm{~m} \mathrm{~s}^{-1}$
D $160 \mathrm{~m} \mathrm{~s}^{-1}$
its velocity wont change. It will be deflected into a circular motion which has a radius dependent on that velocity, the mass, and the force.
(Total 1 mark)

A coil with 20 circular turns each of diameter 60 mm is placed in a uniform magnetic field of flux density 90 mT .

Initially the plane of the coil is perpendicular to the magnetic field lines as shown in Figure \mathbf{X}.

Figure \mathbf{X}

Figure Y

The coil is rotated about a vertical axis by 90° in a time of 0.20 s so that its plane becomes parallel to the field lines as shown in Figure \mathbf{Y}.
Assume that the rate of change of flux linkage remains constant.
What is the emf induced in the coil?

$$
\begin{aligned}
B & =90 \mathrm{MT} \\
\Phi & =\beta A=2.54 \times 10^{-4} \\
\frac{d \Phi}{d t} & =\frac{-20 \times 2.5 \times 10^{-4}}{0.2} \\
& =25 \mathrm{mV}
\end{aligned}
$$

A zero
-

B 1.3 mV
(c) 25 mV

0

D 100 mV
0
(Total 1 mark)
3 The mean power dissipated in a resistor is $47.5 \mu \mathrm{~W}$ when the root mean square (rms) voltage across the resistor is 150 mV .

What is the peak current in the resistor?

$$
\begin{aligned}
P_{r m s}= & V_{r \uparrow s} \times I_{r m s} \\
& I_{r m}=3.16 \times 10^{-4} \\
\therefore I_{p}= & I_{m s} \times \sqrt{1}
\end{aligned}
$$

A $\quad 2.3 \times 10^{-4} \mathrm{~A}$
0
B $4.5 \times 10^{-4} \mathrm{~A}$
0

C $\quad 2.3 \times 10^{3} \mathrm{~A}$
0

D $\quad 4.5 \times 10^{3} \mathrm{~A}$ \square
(Total 1 mark)

4 A horizontal copper wire of mass $4.0 \times 10^{-3} \mathrm{~kg}$ and length 80 mm is placed perpendicular to a horizontal magnetic field of flux density 0.16 T . The magnetic force acting on the wire supports the weight of the wire.

need I

How many electrons are passing a point in the wire in each second?
$B I L=m g$

A $\quad 1.9 \times 10^{18}$
BL

$$
=3.1 \mathrm{c} / \mathrm{s}
$$

(B) 1.9×10^{19}

0

C $\quad 1.9 \times 10^{20}$
0

$$
\therefore n 08 e^{-}=\frac{311}{1.6 \times 10^{-19}}
$$

(Total 1 mark)
5 The figure below shows an end view of a simple electrical generator. A rectangular coil is rotated in a uniform magnetic field with the axle at right angles to the field direction. When in the position shown in the figure below the angle between the direction of the magnetic field and the normal to the plane of the coil is θ.

(a) The coil has 50 turns and an area of $1.9 \times 10^{-3} \mathrm{~m}^{2}$. The flux density of the magnetic field is $2.8 \times 10^{-2} \mathrm{~T}$. Calculate the flux linkage for the coil when θ is 35°, expressing your answer to an appropriate number of significant figures.
F.L. $=B A N \cos \theta=2.2 \times 10^{-3} \quad(2 \mathrm{Sf})$
answer = \qquad Wb turns
(b) The coil is rotated at constant speed, causing an emf to be induced.
(i) Sketch a graph on the outline axes to show how the induced emf varies with angle θ during one complete rotation of the coil, starting when $\theta=0$. Values are not required on the emf axis of the graph.

max at
$0=90$.
$0 \operatorname{dt} \theta=0$
(ii) Give the value of the flux linkage for the coil at the positions where the emf has its greatest values.

$$
\text { answer }=\ldots \quad \text { Wb turns }
$$

(iii) Explain why the magnitude of the emf is greatest at the values of θ shown in your answer to part (b)(i).
ε is α note of change 78 flux.

\qquad
\qquad
\qquad
\qquad resistance $2.0 \mathrm{k} \Omega$ and an oscilloscope, as shown in Figure 1.

Figure 1
(a) The rms current through the resistor is 5.3 mA . Calculate the peak voltage across the resistor. \qquad
\qquad
(b) The settings on the oscilloscope are
timebase: 250μ s per division,
voltage sensitivity: 5.0 V per division. So ± 3 dibs (y)
Draw on the grid, which represents the screen of the oscilloscope, the trace that would be seen.

Mark schemes

1
 C

2
C

3 B

4
B

5 (a) flux linkage $(=N \phi=B A N \cos \theta)$
$=2.2 \times 10^{-3}$ (Wb turns) (1)
answer must be to 2 sf only (1)

$$
=2.8 \times 10^{-2} \times 1.9 \times 10^{-3} \times 50 \times \cos 35^{\circ}(1)
$$

3
(b) (i) reasonable sine curve drawn on axes, showing just one cycle, starting at emf $=0$ (1)
(ii) the flux linkage in these positions is zero (1)
(iii) induced emf μ (or =) rate of change of flux (linkage) (1)
flux (linkage) through the coil changes as it is rotated (1)
from maximum at $\theta=0,180^{\circ}$ to zero at 90° and 270° (1)
rate of change is greatest when plane of coil is parallel to B [or reference to $\varepsilon=B A N \omega \sin \omega t$, or $\varepsilon=B A N \omega \sin \theta]$ (1)
because coil then cuts flux lines perpendicularly [or $\varepsilon=B A N \omega \sin \omega t$ shows ε is greatest when $\omega t=90^{\circ}$ or 270°] (1)
$\max 3$
$6 \quad$ (a) $\quad \begin{aligned} & (V=I R \text { gives }) \quad V_{\text {rms }}=\left(5.3 \times 10^{-3} \times 2 \times 10^{3}\right)=10.6(\mathrm{~V})(1) \\ & V_{0}=V_{\text {rms }} \sqrt{ } 2=10.6 \mathrm{~V} 2=15 \mathrm{~V}(1) \quad(14.99 \mathrm{~V})\end{aligned}$
[or calculate $I_{0}(=7.5 \mathrm{~mA})$ and then V_{0}]
(b) (use of $T=\frac{1}{f}$ gives) $T=\frac{1}{500}=2 \times 10^{-3}=20(\mathrm{~ms})(1)$
trace to show:
correct wave shape (sinusoidal) (1)
correct amplitude (3 divisions) (1)
correct period (8 divisions) (1)

