

box

	The search coil has 200 turns and a cross-sectional area of $3.5 \times 10^{-5} \text{ m}^2$.			
04.1	The search coil is placed at $x = 0.070$ m.			
	Show that the magnetic flux linkage through the search coil is about 5×10^{-4} Wb. [2 marks]			
	Question 4 continues on the next page			

IB/M/Jun21/7408/2

Do not write outside the box

04.2	The search coil is now moved at a constant speed of 0.80 m s^{-1} along the as x is increasing. An emf is induced across the terminals of the search coil. Explain what happens to the value of the emf as the search coil moves.	tis so that	Do not write outside the box
04.3	The search coil passes through the position where $x = 0.10$ m. Deduce whether the emf can exceed 5 mV for values of <i>x</i> greater than 0.10	m. [4 marks]	
			8

		Do not write
0 5.2	The peak pd of the alternating supply is $10.0\ kV.~$ The proton leaves the cyclotron with kinetic energy of $14\ MeV.~$	outside the box
	Determine the number of times the proton moves across the gap before it leaves the cyclotron.	
	[1 mark]	
	number of times =	
	The radius of the outermost semicircular path of the proton is R and the proton leaves with a maximum kinetic energy E_k .	
0 5.3	Show that $E_{\mathbf{k}}$ is given by	
	$E_{\rm k} = \frac{e^2 B^2 R^2}{2m_{\rm p}}$	
	[3 marks]	

0 5. **4** A hospital decides to purchase a cyclotron in order to manufacture its own radioactive isotopes using high-speed protons.

The required minimum kinetic energy of the emerging protons is 11 MeV. The cost of a cyclotron is approximately proportional to $E_k^{1.5}$.

The cost of a 10 MeV cyclotron is about £2.3 million.

 Table 1 gives information for three cyclotrons X, Y and Z.

Table 1

Cyclotron	<i>B I</i> T	<i>R</i> / m
x	1.3	0.38
Y	1.1	0.50
Z	0.5	0.60

Deduce which cyclotron ${\bf X},\,{\bf Y}$ or ${\bf Z}$ will satisfy the energy requirement for the lowest cost.

Go on to determine the approximate cost of this cyclotron.

[4 marks]

cyclotron = _____

cost =

2 2	The diagram shows a square coil with its plane	parallel to a uniform magnetic field.	Do not write outside the box
	Ŷ		
		→	
		,	
	Z	uniform magnetic ──── field	
	coil		
	Ý		
	The coil always remains within the magnetic fie There are four possible changes to the position	શેd. ો of the coil:	
	 moving it to the left moving it towards Y rotating it about the axis YY' rotating it about an axis Z that is at its centre 	and perpendicular to the plane of the coil.	
	How many of these changes will result in an in- occurs?	duced emf in the coil while the change	
		[1 mark]	
	A one		
	B two		
	C three		
	D four		
2 3	Mains electricity is rated $230\ \mathrm{V}$ in the UK.		
	Which is correct?	[1 mark]	
	A The mean voltage is 163 V		
	B The peak voltage is 230 V		
	C The root mean square voltage is 325 V		
	D The peak-to-peak voltage is 650 V.		
	D The peak-to-peak voltage is 050 v.		

