Do not write outside the

1 9 A load of 50 N is suspended from a wire that has an area of cross-section of 1 mm².

The stress in the wire, in Pa, is between

[1 mark]

- **A** 10^0 and 10^3
- 50

0

B 10^3 and 10^6

0

C)0⁶ and 10⁹

0

 $D 10^9 \text{ and } 10^{12}$

- 0
- Which combination of properties would produce the smallest extension of a wire when the same tensile force is applied to the wire?

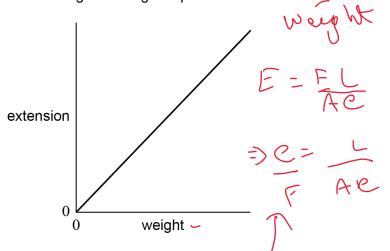
[1 mark]

		Cross-sectional area	Length L)	Young modulus of material
ХЪ	А	X	3 <i>L</i>	E
Z	В	2.X	L	E
3	С	X	3 <i>L</i>	4 <i>E</i>
4	D	2 <i>X</i>	L	4 <i>E</i>
2×4			-	

AC AC

o e=FL

o ext


Turn over for the next question

Turn over ▶

Do not write outside the

An experiment is carried out to determine the Young modulus E of steel using a vertical wire of initial length E and cross-sectional area E. Various weights are suspended from the wire. A graph of extension against weight is plotted.

What does the gradient of the graph represent?

which [1 mark]

 \mathbf{A} E

0

 $\mathbf{B} \frac{1}{F}$

0

c $\frac{EA}{L}$

0

 $\mathbf{D} \ \frac{L}{EA}$

X

Turn over for the next question

Do not write outside the

2 6 Two wires **X** and **Y** have the same extension for the same load.

X has a diameter d and is made of a metal of density ρ and Young modulus E.

Y has the same mass and length as **X** but its diameter is 2d.

What are the density and the Young modulus of the metal from which Y is made?

[1 mark]

	Density	Young modulus	
Α	$\frac{ ho}{2}$	$\frac{E}{4}$	0
В	$\frac{ ho}{2}$	4E	0
C	$\frac{\rho}{4}$	$\frac{E}{4}$ \checkmark	X
D	$\frac{ ho}{4}$	4E	0

This is easy physics but the algebra needs careful handling

$$C = \frac{M}{V_{x}}$$

$$C_{y} = \frac{M}{V_{y}}$$

$$\frac{C_{3}C_{3}}{V_{5}}$$