A microlight is a small aircraft powered by a petrol engine. The diagram represents the flight path, $A B$, of a microlight on a short horizontal training flight.

(a) On its outward journey, the wind velocity is $7.5 \mathrm{~m} \mathrm{~s}^{-1}$ due North and the resultant velocity of the microlight is $20 \mathrm{~m} \mathrm{~s}^{-1}$ in a direction 68° East of North, so that it travels along AB .
(i) Show that for the aircraft to travel along $A B$ at $20 \mathrm{~m} \mathrm{~s}^{-1}$ it should be pointed due East.
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
(ii) The driving force of the aircraft engine is $2.0 \times 10^{3} \mathrm{~N}$. Calculate the work done by the engine if the aircraft travels 10 km on its outward journey.
\qquad
\qquad
\qquad
(iii) Calculate the output power of the aircraft engine for the outward journey.
\qquad
\qquad
\qquad
(b) After flying 10km, the aircraft turns round and returns along the same flight path at a resultant velocity of $14 \mathrm{~m} \mathrm{~s}^{-1}$. Assuming that the turn-round time is negligible, calculate the average speed for the complete journey.
\qquad
\qquad
\qquad

2 The object in the diagram below is in equilibrium.

By resolving forces, calculate:
(a) the angle θ;

Angle θ \qquad
(b) the magnitude of the force F.

Magnitude of the force \boldsymbol{F} \qquad

3 (a) State the difference between vector and scalar quantities.
\qquad
(b) State one example of a vector quantity (other than force) and one example of a scalar quantity.

Vector quantity \qquad

Scalar quantity
(c) A 6.0 N force and a 4.0 N force act on a body of mass 7.0 kg at the same time. Calculate the maximum and minimum accelerations that can be experienced by the body.

Maximum acceleration \qquad Minimum acceleration \qquad

4 Coplanar forces of $5 \mathrm{~N}, 4 \mathrm{~N}$ and 3 N act on an object. Which force, in N, could not possibly be the resultant of these forces?

A 0
B 4
C 12
D $\quad 16$
(Total 1 mark)

1
(a) (i) component velocity North $=20 \cos 68^{\circ}(1)$
$=7.5 \mathrm{~m} \mathrm{~s}^{-1}$
which is supplied by wind (1)
by triangle of velocities [or by components] (aircraft must point East) (1)
alternative (a)(i)
triangle or parallelogram of velocities (1)
find angle between aircraft component and wind using sine and cosine formulae - prove 90° (1) (1)
(ii) work done $=F s \cos \theta$ [or force \times distance moved in direction of force or $\left.2.0 \times 10^{3} \times 10 \times 10^{3} \cos 22^{\circ}\right](1)$
$=1.8(5) \times 10^{7} \mathrm{~J}(1)$
(iii) power $=\frac{\text { work done }}{\text { time taken }}=1.8(5) \times 10^{7} \div\left(\frac{10000}{20}\right)$
(1)
$=3.6 \times 10^{4} \mathrm{~W}(1)$
alternative (iii)
power $=$ force \times velocity component East $=2.0 \times 10^{3} \times 20 \cos 22^{\circ}(1)$

$$
=3.6 \times 10^{4} \mathrm{~W}(1)
$$

(max 6)
(b) return time $=\left(\frac{10000}{14}\right)=714 \mathrm{~s} \therefore$ total time $=1214 \mathrm{~s}(1)$
average speed $=\left(\frac{20000}{1214}\right)=16[16.5] \mathrm{m} \mathrm{s}^{-1}(1)$
(2)
[8]
2 (a) $7.5=15 \sin \theta($ or $15 \cos \theta)$ (i.e. attempt to resolve and equate)
C1
$\theta=30^{\circ}$ (cao) (n.b. unit accept deg or degree)
A1
2
(b) $F=15 \cos 30$ or $15 \sin 60$ (if wrong way round) $=13 \mathrm{~N}$ or $F=\left(15^{2}-7.5^{2}\right)^{1 / 2}$

3 (a) vector has direction, scalar has no direction / only vector has direction
(b) vector: any vector except force (accept weight)
scalar: any scalar
(c) F=ma in any form
maximum: $1.4 \mathrm{~m} \mathrm{~s}^{-2}$
minimum: $0.29 \mathrm{~m} \mathrm{~s}^{-2}$

4

