| 0 | 4 | A pair of cameras is used on a motorway to help determine the average speed of |
| :--- | :--- | :--- | vehicles travelling between the two cameras.

Figure 5 shows the speed-time graph for a car moving between the two cameras.
Figure 5

Determine whether the average speed of the car exceeded this speed limit.

$$
\begin{aligned}
& d=(22.5+6.75+24+9+18) \times 60=4815 \mathrm{~m} \\
& t=4 \times 60=240 \\
& \therefore v_{w}=\frac{4815}{240}=20.1 \mathrm{~m} / \mathrm{s} 500 \mathrm{~h}
\end{aligned}
$$

0	4	2	Markings called chevrons are used on motorways.

The chevron separation is designed to give a driver time to respond to any change in speed of the car in front. The driver is advised to keep a minimum distance d behind the car in front, as shown in Figure 6.

Figure 6
\qquad

Government research suggests that the typical time for a driver to respond is between 1.6 s and 2.0 s .

Suggest a value for d where the speed limit is $31 \mathrm{~m} \mathrm{~s}^{-1}$.

Use worse case - 2.0s
$\mathrm{v}=31 \mathrm{~m} / \mathrm{s}$ therefore distance $=2 \times 31=62 \mathrm{~m}$

$$
d=
$$

\qquad m
$\begin{array}{lll}0 & 4 & 3\end{array}$ to stop.

The brakes of a car are applied when its speed is $31 \mathrm{~m} \mathrm{~s}^{-1}$ and the car comes to rest. The total mass of the car is 1200 kg .

The average braking force acting on the car is 6.8 kN .
Calculate the time taken for the braking force to stop the car and the distance travelled by the car in this time.

$$
\begin{aligned}
F_{x \Delta t} \Delta \Delta p \Rightarrow \Delta t & =\frac{31 \times 1200}{6.8 \mathrm{r}} \\
& =\underline{\underline{5.47 \mathrm{sec}}}
\end{aligned}
$$

$$
\left.F_{m}=a=\frac{6800}{1200}=5.67 \mathrm{~m}\right) \mathrm{s}^{2}
$$

$$
v^{2}=u^{2}+2 \operatorname{as} \Rightarrow \frac{v^{\prime} 2-u^{2}}{2 a}=5
$$

| 0 | 4 | 4 | Suggest why the chevron separation on motorways does not take into account the |
| :--- | :--- | :--- | :--- | distance travelled as a car comes to rest after the brakes are applied.

\qquad
\qquad
\qquad
\qquad

Suggest an appropriate advisory speed for this section of the motorway.
\qquad $\mathrm{m} \mathrm{s}^{-1}$

Turn over for the next question

$2 \mathbf{0}$ The diagram shows the forces acting on a uniform rod.

A The rod is in equilibrium. \square
\bigcirc
\square
C. For equilibrium, a clockwise moment of 1.0 Nm is needed.

0

They then fall freely 0.80 m to reach a horizontal surface.
How far has a drop fallen when the previous drop hits the surface?

22 A pellet with velocity $200 \mathrm{~m} \mathrm{~s}^{-1}$ and mass 5.0 g is fired vertically upwards into a stationary block of mass 95.0 g . The pellet remains in the block. The impact causes the block to move vertically upwards.

What is the maximum vertical displacement of the block?
don't know if Ak is conserved in collision so use momentum
A. 5.1 m \square

C 51 m
D 100 m

