0 3	Figure 5 shows a spacecraft travelling towards a comet. The spacecraft has an array of blocks designed to capture small dust particles from the comet's tail.	Do not write outside the box
	Figure 5	
	array of blocks spacecraft	
	dust tail of comet	
	To test the blocks before launch, a spherical dust particle P is fired at a right angle to the surface of a fixed, stationary block. P has a mass of 1.1×10^{-9} kg. It has a speed of 5.9×10^3 m s ⁻¹ when it hits the surface of the block. P comes to rest inside the block.	
03.1	Calculate the work done in bringing P to rest. [1 mark]	
	work done =J	
0 3.2	P travels a distance of 2.9 cm in a straight line inside the block before coming to rest. The resultant force on P varies as it penetrates the block.	
	Calculate the average force acting on P as it is brought to rest. [2 marks]	
	average force =N	

IB/M/Jun21/7407/1

0 3.4	In another test, a spherical particle ${f Q}$ is fired at a right angle to the surface of an identical block.	outside the box
	Q has the same mass as P and is travelling at the same speed as P when it strikes the surface of the block. Q is made from a less dense material than P .	
	Compare the distance travelled by Q with that travelled by P as they are brought to rest.	
	[3 marks]	
		10

Do not write

Turn over ►

Figure 8 shows the forces acting on the pole.

Turn over ►

box

0 5 2 Figure 11 show propeller rotate accelerated, mo	vs the direction of the thrust exerted by the ship's propeller as the ship's engine makes the propeller rotate. When more wore work is done by the engine.	Do not write outside the box rater is
	Figure 11	
surface of water		
direction of thrust on water		
Explain, using I enables the shi	propeller hull of ship Newton's laws of motion, how the thrust of the propeller on the v p to maintain a constant momentum. [4	vater marks]

04.2	Show that the magnitude of F is approximately 70 N. [1 mark]	Do not writ outside the box
0 4 . 3	The belt is driven by an electric motor. When the motor is switched on, the belt and the block accelerate uniformly from rest to a speed of 0.32 m s^{-1} in a time of 0.50 s .	
	Calculate the magnitude of the frictional force of the belt on the block during this acceleration.	
	[3 marks]	
	frictional force = N	
	Question 4 continues on the next page	
	Turn over ►	

0 4 . 4 The motor is connected to a 110 V dc supply that has negligible internal resistance. The maximum operating current in the motor is 5.0 A.

The efficiency of the motor and drive system of the conveyor is 28%. The belt travels at $0.32~m~s^{-1}$ and is 8.0~m long.

Deduce the maximum number of blocks that can be moved on the belt at one time. [4 marks]

maximum number of blocks =

Do not write outside the

box

