Particle Physics Exam Qs

Q1.(a) State the combination of quarks that makes up a neutron.

_____udd ________(1)

the eqn in part b is wrong - it is an e not an anti e (ie not an e +)

(b) When a neutron decays, a down quark changes into an up quark as shown by the following reaction.

$$d \rightarrow u + e + v_e$$

Show, in terms of the conservation of charge, baryon number and lepton number, that this transformation is permitted. assuming its an electron and not an anti-

electon... charge: -1/3-> 2/3+-1

charge: -1/3-> 2/3+-1 baryon: 1/3 ->1/3+0+0 Lepton: 0->0+1+-1

(ii) State the products arising from the decay of an anti-down quark, \overline{d} .

Q2.In a nuclear reaction ${}^{14}_{7}N$ is bombarded by neutrons. This results in the capture of one neutron and the emission of one proton by one nucleus of ${}^{14}_{7}N$. The resulting nucleus is

(Total 1 mark)

Q3.Leptons, mesons and baryons are three classes of sub-atomic particles.

(a) Some classes of particles are fundamental; others are not. Circle the correct category for each of these three classes.

leptons fundamental/not fundamental
mesons fundamental/not fundamental
baryons fundamental/not fundamental

(1)

(1)

(b) Name the class of particles of which the proton is a member.

6 and ons

(c) By referring to the charges on up and down quarks explain how the proton has a charge of +1e.

 $2u_{+}1l_{=+1}e_{-\frac{1}{3}e_{-\frac{$

(Total 4 marks)

Q4.A negative pion (π^-) is a meson with a charge of -1e.

State and explain the structure of the π^- in terms of up and down quarks.

(Total 3 marks)

Q5.A physicist, who is attempting to analyse a nuclear event, suggests that a π^- particle and a proton collided and were annihilated with the creation of a neutron, a π^+ particle, and a K-particle.

 π and K particles are mesons. The baryon and lepton numbers of both these mesons are zero.

(a) Write down the equation that represents this interaction.

$$\pi' + \rho \longrightarrow n + \pi' + \kappa$$

(b) Show, in terms of the conservation of charge, baryon number and lepton number, that this transformation is permitted.

All balance therefore this transformation is allowed

(4) (Total 5 marks)

Q6.A radium-288 nuclide ($^{228}_{88}$ Ra) is radioactive and decays by the emission of a β- particle to form an isotope of actinium (Ac).

(a) Complete the equation for this decay

$$^{228}_{88}\text{Ra} \rightarrow ^{228}_{8.4}\text{Ac} + ... \beta^{-} + ... 2$$
(3)

(b) β - decay is the result of a neutron within a nucleus decaying into a proton. Describe the change in the quark sub-structure that occurs during the decay.

(Total 4 marks)