Section A

Answer all questions in this section.

| 0 | 1 |
| :--- | :--- | Cosmic rays are high-energy particles that come from space. Most of these particles are protons. There are other particles in cosmic rays, including atomic nuclei.

Table 1 gives the data for one particular nucleus \mathbf{X}.
Table 1

Mass / kg	8.02×10^{-26}
Specific charge / C kg	
Kinetic energy / MeV	4.39×10^{7}

number of neutrons $=$ \qquad

| 0 | 1 | $\mathbf{2}$ |
| :--- | :--- | :--- | Calculate the speed of \mathbf{X}.

Ignore relativistic effects.

A pion $\left(\pi^{+}\right)$and a kaon $\left(\mathrm{K}^{+}\right)$are produced when cosmic rays interact with the upper atmosphere.

| $\mathbf{0}$ | $\mathbf{1}$ | $\mathbf{3}$ The π^{+}decays to produce a positron and an electron neutrino. |
| :--- | :--- | :--- | :--- |

Show how the conservation laws apply to this decay.
\qquad
\qquad
\qquad
\qquad
\qquad

0	1	4	The K^{+}decays to produce an anti-muon and a muon neutrino.

Explain how strangeness applies in this decay.
\qquad
\qquad
\qquad
\qquad

| 0 | $\mathbf{1}$ | $\mathbf{5}$ Write an equation for $\mathrm{a} \mathrm{K}^{+}$decay that involves only hadrons. |
| :--- | :--- | :--- | :--- |

0	9	The gravitational force is one of the four fundamental forces.

The ticks in the table match particles with the other fundamental forces.
In which row is the particle matched to the only other fundamental forces it experiences?
[1 mark]

	Particle	Electromagnetic force	Weak nuclear force	Strong nuclear force
A	μ^{+}	\checkmark	\checkmark	
B	\bar{p}	\checkmark		\checkmark
C	π^{0}	\checkmark	\checkmark	\checkmark
D	v_{e}		\checkmark	\checkmark

| $\mathbf{1}$ | $\mathbf{0}$ The proton number of uranium is 92 and the proton number of radon is 88 |
| :--- | :--- | Which series of decays turns a uranium nucleus into a radon nucleus?

A $\alpha+\beta^{-}+\beta^{-}+\alpha+\alpha$ \square
B $\beta^{-}+\beta^{-}+\alpha+\beta^{-}+\alpha$

C $\alpha+\alpha+\alpha+\alpha+\beta^{-}$ \square
D $\beta^{-}+\beta^{-}+\beta^{-}+\beta^{-}+\alpha$

1	1	The diagram represents a particle interaction.

Which row identifies particles \mathbf{E}, \mathbf{F} and \mathbf{G} ?

	E	F	G		
A	up quark	down quark	neutrino		
B	down quark	up quark	neutrino		0
:---					
C					
up quark					
D					
down quark					

| 1 | 2 |
| :--- | :--- | The quark combination of a particle is sū.

Which is true for this particle?

A It has a baryon number of 1
B It has a charge of $-1.6 \times 10^{-19} \mathrm{C}$.
C It is a pion.
D It has a strangeness of $-\frac{1}{3}$ \square

