

The apparatus in Figure 1 is used with a monochromatic light source of constant intensity. Measurements are made to investigate how the current I in the microammeter varies with positive and negative values of the potential difference V of the variable voltage supply. Figure 2 shows how the results of the investigation can be used to find the stopping potential. Figure 2 30 20 μA 10 0 -1.5-1.0-0.50.5 1.0 1.5 0.0 stopping V/Vpotential 0 2 . 2 Determine the number of photoelectrons per second leaving the photoemissive surface when the current is a maximum. surface when the current is a maximum. $T = 30\mu A - 30 \times 10^{-6} C/S \qquad q_{12} = 1.6 \times 10^{-14} C [2 \text{ marks}]$ $\therefore no \ of \ electrons \qquad 30 \times 10^{-6} C/S \qquad (16 \times 10^{-14} C) C = 1.6 \times 10^{-14} C = 1.6$ number of photoelectrons per second = Question 2 continues on the next page

Turn over ►

02.3	Explain why <i>I</i> reaches a constant value for positive values of <i>V</i> . [2 marks]	outside the box
	Photoelectrons are emitted form the surface in a range of directions and speeds. Some will therefore miss the left hand electrode. However, as the pd is increased then the attractive force between these electrons and the lhs electrode increases and some electrons that would miss the electrode now hit it, and so the current increases. Eventfully all the emitted electrons hit the opposite electrode and so we have a maximum current	
02.4	Explain why I decreases as the value of V becomes more negative. [3 marks]	
	As the pd becomes more negative so there is an increasing repulsive force between the electrons and the electrode and some e- wont arrive at said electrode. Eventually the repulsive force increases to a point where there is no current as no photoelectrons arrive at the cathode.	

Do not write

outside the 0 2 5 The investigation is repeated with a different photoemissive surface that has a smaller value of the work function. The source of electromagnetic radiation is unchanged.

> Discuss the effect that this change in surface has on the value of the stopping potential.

> > [3 marks]

 $hf = Ekmax + \Phi$ So if Φ decreases then for a given hf (which we have as the e/m is unchanged) the Ekmax will increase and so will the stopping potential

12

Do not write

box

Turn over for the next question

Turn over ►

