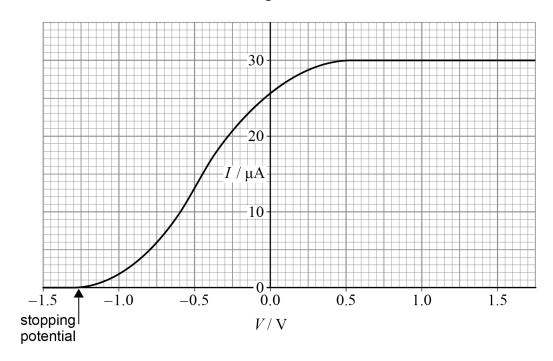
2020 P1 AQA 4

Do not write outside the box


0 2	Figure 1 shows an arrangement used to investigate the photoelectric effect.
	Figure 1
	wire electrode with photoemissive surface
	variable voltage supply
	A current is measured on the microammeter only when electromagnetic radiation with a frequency greater than a certain value is incident on the photoemissive surface.
0 2 . 1	Explain why the frequency of the electromagnetic radiation must be greater than a certain value.
	[2 marks]

The apparatus in **Figure 1** is used with a monochromatic light source of constant intensity. Measurements are made to investigate how the current I in the microammeter varies with positive and negative values of the potential difference V of the variable voltage supply.

Figure 2 shows how the results of the investigation can be used to find the stopping potential.

Figure 2

0 2 . 2 Determine the number of photoelectrons per second leaving the photoemissive surface when the current is a maximum.

[2 marks]

number of photoelectrons per second = _____

Question 2 continues on the next page

Do not write outside the box

0 2.3	Explain why ${\cal I}$ reaches a constant value for positive values of ${\cal V}$.	[2 marks]
0 2.4	Explain why ${\cal I}$ decreases as the value of ${\cal V}$ becomes more negative.	[3 marks]

6

0 2.5	The investigation is repeated with a different photoemissive surface that has a smaller value of the work function. The source of electromagnetic radiation is unchanged.
	Discuss the effect that this change in surface has on the value of the stopping
	potential. [3 marks]
	Town areas for the most marchine
	Turn over for the next question

Turn over ▶

0 8 A photon has energy of 1×10^{18} eV.

An object of mass $0.03~\mathrm{kg}$ has kinetic energy equal to the energy of the photon.

What is the speed of the object?

[1 mark]

- **A** 1 m s^{-1}
- 0
- $\textbf{B} \ 3 \ m \ s^{-1}$
- 0
- $C 10 \text{ m s}^{-1}$
- 0
- $D 30 \text{ m s}^{-1}$
- 0

0 9 A deuterium nucleus and a tritium nucleus fuse together to produce a helium nucleus and particle **X**.

$${}_{1}^{2}H + {}_{1}^{3}H \rightarrow {}_{2}^{4}He + X$$

What is X?

[1 mark]

- A an electron
- 0
- **B** a neutron
- 0
- **C** a positron
- 0
- **D** a proton
- 0

1 0 The radioactive nuclide $^{232}_{90}$ Th decays by one α emission followed by two β⁻ emissions.

Which nuclide is formed as a result of these decays?

[1 mark]

- **A** $^{238}_{92}$ U
- 0
- $\mathbf{B} \quad {}^{230}_{90}\mathrm{Th}$
- 0
- c_{90}^{228} Th
- 0
- $\textbf{D} \quad ^{228}_{88} \rm Rn$
- 0