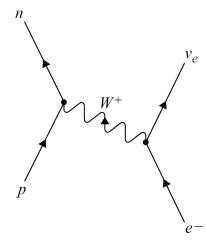
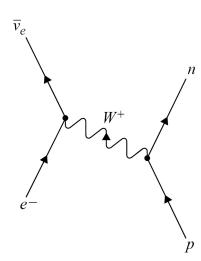
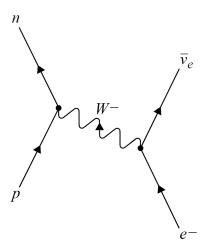

Do not write outside the box


0 8 Which diagram represents the process of electron capture?

[1 mark]


Α


В

С

D

A

В

C

D

Do not write outside the

0 9 Which row is correct?

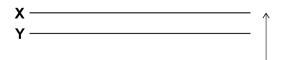
[1 mark]

	Name of particle	Classification	Quark structure	
A	antineutron	meson	$\overline{u}\overline{u}\overline{d}$	0
В	positive kaon	baryon	$\overline{u}s$	0
С	antiproton	baryon	$\overline{u}\overline{u}\overline{d}$	0
D	positive pion	meson	$\overline{u}d$	0

An alpha particle and a nucleus of boron ${}^{10}_{5}{
m B}$ interact to form an unstable nucleus and a free neutron.

The unstable nucleus decays by positron emission to form a nucleus of nuclide ${\bf X}$.

What is X?


[1 mark]

- **A** ${}^{13}_{5}$ B
- 0
- **B** ${}^{13}_{6}$ C
- 0
- **c** $^{13}_{7}$ N
- 0
- $D_{8}^{13}O$
- 0

Do not write
outside the
hox

1 2 The diagram shows the ground state and two higher-energy states **X** and **Y** of an atom.

A transition from $\bf X$ to the ground state produces a photon of wavelength $147~\rm nm$. A transition from $\bf Y$ to the ground state produces a photon of wavelength $160~\rm nm$.

energy

ground state —

What is the energy difference between **X** and **Y**?

[1 mark]

- **A** $1.5 \times 10^{-17} \, \mathrm{J}$
- 0
- **B** $1.4 \times 10^{-18} \, \mathrm{J}$
- 0
- **C** $1.2 \times 10^{-18} \, J$
- 0
- **D** $1.1 \times 10^{-19} \, \mathrm{J}$
- 0

1 3 Which provides evidence for discrete atomic energy levels?

[1 mark]

A β^+ decay

- 0
- **B** electron diffraction
- 0

C line spectra

- 0
- **D** the photoelectric effect
- 0

Answer all questions in the spaces provided.

0 1

A strong interaction between a negative kaon (K^-) and a proton (p) produces an omega-minus (Ω^-) particle, a neutral kaon (K^0) and an unidentified particle \mathbf{Y} .

The interaction is:

$$K^- + p \rightarrow \Omega^- + K^0 + Y$$

Table 1 contains information on the particles in this interaction.

Table 1

	K-	р	Ω^-	\mathbf{K}^0	Y
Rest energy / MeV	493.8	938.3	1672	497.8	493.8
Baryon number		+1	+1		0
Charge	-1 <i>e</i>	+1e	-1 <i>e</i>	0	
Strangeness	-1	0	-3	+1	

0 1 . 1 Complete Table 1.

[2 marks]

0 1 • Calculate, in J, the rest energy of the Ω^- .

[2 marks]

rest energy =

0 1 . 3	Suggest how energy is conserved in this interaction. Refer to the rest energies of the particles in Table 1 .	
		[2 marks]
	The quark structure of the Ω^- particle is sss.	
	The Ω^- is unstable. It decays into a proton through a series of decays:	
	$\Omega^- ightarrow \; \Xi^0 \; + \; \pi^-$	
	followed by	
	$\Xi^0 o \Lambda^0 + \pi^0$	
	followed by	
	$\Lambda^0 o \mathrm{p} + \pi^-$	
	The Ξ^0 and Λ^0 are both hadrons.	
0 1.4	Deduce the quark structure of the Λ^0 particle.	
		[4 marks]
	quark structure of Λ^0 =	
	Question 1 continues on the next page	

	The products of the decay series include π^0 and π^- particles. These particles are unstable and decay.
0 1.5	The π^0 decays into gamma photons. Each gamma photon has a wavelength of 1.25×10^{-14} m

Calculate the energy of one of these photons.

[2 marks]

energy of photon =	
oriorgy or priotori	•

 $\begin{bmatrix} \mathbf{0} & \mathbf{1} \end{bmatrix}$. **6** The negative pion π^- decays.

Which row shows the particles that could be created in this decay? Tick (\checkmark) **one** box.

[1 mark]

$$\mu^- + \nu_\mu$$

$$e^- + \overline{v}_e$$

$$e^- + v_e$$

$$e^{-} + e^{+} + e^{-}$$

13

		Do not write
1 2	The four lowest energy levels of an atom are shown.	outside the box
	$ \underline{\qquad \qquad n=4} \\ \underline{\qquad \qquad n=3} $	
	$\underline{\hspace{1cm}}$ $n=2$	
	n=1	
	A gas contains atoms in the $n=4$ level. The atoms de-excite to the $n=1$ level.	
	How many photon frequencies are observed?	
	[1 mark]	
	A 3	
	B 4	
	C 5	
	D 6	

Do	not	write
ou	tside	the
	ho	v

1 3 Monochromatic light of frequency f is incident on a metal surface in a vacuum. Photoelectrons are emitted from the surface.

The photoelectric current I is measured.

The magnitude of the stopping potential $V_{\rm s}$ is then measured.

f is increased without changing the rate at which photons arrive at the metal surface.

What are the new measurements of the photoelectric current and the magnitude of the stopping potential?

[1 mark]

	Photoelectric current	Magnitude of the stopping potential	
A	I	$V_{ m s}$	0
В	Ι	> V _s	0
С	> I	$V_{ m s}$	0
D	> I	> V _s	0

1	4	An electron and a positron annihilate each other.

Which quantity is **not** conserved in the annihilation?

[1 mark]

Α	electric charge	0
---	-----------------	---

23 AQA AS P2 26 Do not write outside the 1 5 Which exchange particle transfers charge during electron capture? [1 mark] 0 A meson **B** pion C virtual photon **D** W boson 1 6 A free neutron decays to produce a proton and [1 mark] 0 A an electron and an antineutrino. **B** an electron and a neutrino. **C** a positron and an antineutrino. **D** a positron and a neutrino. 1 7 Two aerials ${\bf A_1}$ and ${\bf A_2}$ receive radio waves from the same distant transmitter ${\bf T}$. The waves have a frequency of 88 MHz. The phase difference between the waves received by \mathbf{A}_1 and \mathbf{A}_2 is $6.6~\mathrm{rad}$. What is the distance $A_1T - A_2T$? [1 mark] **A** 1.6 m **B** 3.2 m **C** 3.6 m **D** 7.2 m

box

Do not write outside the box

2 2 A nucleus of bismuth- $209 \begin{pmatrix} 209 \\ 83 \end{pmatrix}$ absorbs a neutron. The newly formed nucleus

subsequently decays in two stages to form a nucleus of nuclide **X**. One beta-minus particle and one alpha particle are emitted during these two decays.

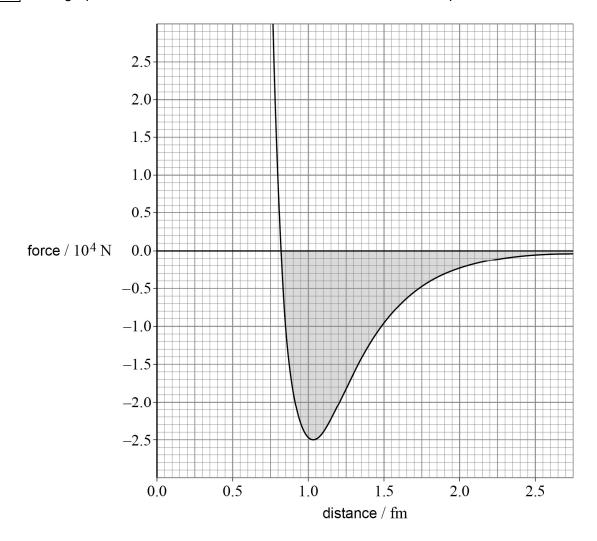
What are the nucleon number and the proton number of X?

[1 mark]

	Nucleon number	Proton number	
A	205	82	0
В	205	83	0
С	206	82	0
D	206	83	0

The concept of exchange particles was introduced to explain forces between elementary particles.

This concept requires that exchange particles have


[1 mark]

- A charge.
- B momentum.
- C phase.
- **D** rest mass.

23 AQA AS P2 39

Do not write outside the box

3 4 The graph shows the variation of force with distance between a proton and a neutron.

The shaded area represents

[1 mark]

30

- A acceleration.
- 0

B impulse.

- 0
- **C** rate of change of kinetic energy.
- 0

D work done.

0

END OF QUESTIONS

