This question is about an experiment to measure the wavelength of microwaves.
A microwave transmitter \mathbf{T} and a receiver \mathbf{R} are arranged on a line marked on the bench.
A metal sheet \mathbf{M} is placed on the marked line perpendicular to the bench surface.
Figure 1 shows side and plan views of the arrangement.
The circuit connected to \mathbf{T} and the ammeter connected to \mathbf{R} are only shown in the plan view.
Figure 1
side view

The distance y between \mathbf{T} and \mathbf{R} is recorded.
\mathbf{T} is switched on and the output from \mathbf{T} is adjusted so a reading is produced on the ammeter as shown in Figure 2.

Figure 2

\mathbf{M} is kept parallel to the marked line and moved slowly away as shown in Figure 3.
Figure 3

The reading decreases to a minimum reading which is not zero.
The perpendicular distance x between the marked line and \mathbf{M} is recorded.
(a) The ammeter reading depends on the superposition of waves travelling directly to \mathbf{R} and other waves that reach \mathbf{R} after reflection from \mathbf{M}.

State the phase difference between the sets of waves superposing at \mathbf{R} when the ammeter reading is a minimum.
Give a suitable unit with your answer.
\qquad
(b) Explain why the minimum reading is not zero when the distance x is measured.
\qquad
\qquad
\qquad
(c) When \mathbf{M} is moved further away the reading increases to a maximum then decreases to a minimum.

At the first minimum position, a student labels the minimum $n=1$ and records the value of x.
The next minimum position is labelled $n=2$ and the new value of x is recorded.
Several positions of maxima and minima are produced.
Describe a procedure that the student could use to make sure that \mathbf{M} is parallel to the marked line before measuring each value of x.
You may wish to include a sketch with your answer.
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
(d) It can be shown that

$$
n \imath=\sqrt{4 x^{2}+y^{2}}-y
$$

where λ is the wavelength of the microwaves and y is the distance defined in Figure 1.
The student plots the graph shown in Figure 4.
The student estimates the uncertainty in each value of $\sqrt{4 x^{2}+y^{2}}$ to be 0.025 m and adds error bars to the graph.

Determine

- the maximum gradient $G_{\max }$ of a line that passes through all the error bars
- the minimum gradient $G_{\min }$ of a line that passes through all the error bars.

$$
\begin{aligned}
& G_{\max }= \\
& G_{\min }=
\end{aligned}
$$

(e) Determine λ using your results for $G_{\text {max }}$ and $G_{\text {min }}$.

$$
\lambda=\ldots \mathrm{m}
$$

Figure 4

(f) Determine the percentage uncertainty in your result for λ.
(g) Explain how the graph in Figure 4 can be used to obtain the value of y. You are not required to determine y.
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
(h) Suppose that the data for $n=13$ had not been plotted on Figure 4.

Add a tick (\checkmark) in each row of the table to identify the effect, if any, on the results you would obtain for $G_{\max }, G_{\text {min }}, \lambda$ and y.

Result	Reduced	Not affected	increased
$G_{\max }$			
$G_{\min }$			
λ			
y			

This question is about the determination of the resistivity of a wire.
Figure 1 shows a micrometer screw gauge that is used to measure the diameter of the wire.
Figure 1

(a) State the resolution of the main scale on the micrometer in Figure 1.
resolution = \qquad mm
(b) Determine the distance between the anvil and the spindle of the micrometer in Figure 1. State any assumption you make.

$$
\text { distance }=\ldots \mathrm{mm}
$$

(c) A student must also determine the length L of the wire between clips P and Q that will be connected into a circuit.

Figure 2 shows the metre ruler being used to measure L.
Figure 2

Determine L

$$
L=
$$

\qquad mm
(d) Calculate the percentage uncertainty in your result for L.

$$
\text { percentage uncertainty }=\ldots \text { \% }
$$

(e) State and explain what the student could have done to reduce uncertainty in the reading for L.
\qquad
\qquad
\qquad
(f) The student intends to make measurements that will allow her to determine the resistance of one metre of the wire. She uses an ohm-meter to measure the resistance R for different lengths L of the wire. The student's measurements are shown in the table below.

$\boldsymbol{L} / \mathbf{c m}$	$\boldsymbol{R} / \mathbf{\Omega}$	
81.6	8.10	
72.2	7.19	
63.7	6.31	
58.7	5.85	
44.1	4.70	

Determine the value that the student should record for the resistance per metre of the wire. Use the additional column in the table above to show how you arrived at your answer.
resistance of one metre of wire $=$ \qquad Ω
(g) Determine the resistivity of the wire. Give a suitable unit for your answer.
mean diameter of the wire $=0.376 \mathrm{~mm}$
resistivity $=$ \qquad unit $=$ \qquad

A lens has a flat surface and a curved surface. An experiment is carried out to determine the radius R of the curved surface of the lens. The lens is placed on a rectangular glass block with its flat surface upwards. The lens is illuminated with monochromatic light reflected from a glass plate as shown in Figure 1.

Figure 1

When the apparatus is viewed from above an interference pattern consisting of concentric dark and bright rings is seen. A travelling microscope positioned as shown in Figure 2 is used to measure the diameter of the bright rings.

Figure 2

enlarged view of pattern of concentric dark and bright rings seen through the microscope
(a) A student chose a particular bright ring (not at the centre of the pattern) and measured its diameter. He called this ring number 0 . Counting outwards from the centre, he measured the diameter of every tenth ring.

Below is a graph of ring number b against ring diameter d.

Draw a line of best fit on the graph above.
(b) Determine the gradient G corresponding to $b=25$.

$$
G=
$$

(c) The radius of curvature R of the lens can be calculated using any point on the graph together with the formula

$$
R=\frac{G d}{2 \lambda}
$$

where $\lambda=589.3 \mathrm{~nm}$.
Determine R.

$$
R=
$$

\qquad m

8 A temperature sensor is connected to a data logger to monitor how the temperature θ of a fixed mass of recently-boiled water varies with time t, over an interval of 600 s . These data are processed to produce the graph shown in Figure 1.

Figure 1

(a) Determine the temperature θ_{1} of the water when t is 190 s .

$$
\theta_{1}=
$$

(b) Determine the gradient G_{1} of the graph at t is 190 s .
G_{1} \qquad
(c) When $t=370 \mathrm{~s}$ the temperature $\theta_{2}=46.6^{\circ} \mathrm{C}$ and the gradient $G_{2}=-0.0645$.

The room temperature θ_{R} is given by $\frac{G_{1} \theta_{2}-G_{2} \theta_{1}}{G_{1}-G_{2}}$
Evaluate θ_{R}.

$$
\theta_{\mathrm{R}}=工{ }^{\circ} \mathrm{C}
$$

(d) It can be shown that when a hot object at a temperature θ is allowed to cool in a draught, the rate at which the temperature decreases is directly proportional to the temperature difference $\left(\theta-\theta_{\mathrm{R}}\right.$) between the object and the surroundings.

A student realises that $\left(\theta-\theta_{\mathrm{R}}\right)$ will decrease exponentially with time and designs an experiment in which two temperature sensors are connected to a data logger.

- \quad Sensor 1 is placed in a beaker of recently-boiled water.
- Sensor 2 measures the air temperature in the room.
- The data logger is programmed to record the output from the sensors as the water cools for 600 s .

The output data from the sensors are processed to produce the graph shown in Figure 2.
Figure 2

($\theta-\theta_{\mathrm{R}}$) will decrease exponentially in the same way that the potential difference (pd) across a discharging capacitor decreases with time.

When a capacitor discharges, the pd across the capacitor falls to $\frac{1}{\mathrm{e}}$ of an initial value in a time called the time constant. Electronic engineers assume that a capacitor becomes fully discharged in a time equal to 5 time constants.

Estimate the time taken for the water to cool down to room temperature.
time taken = \qquad s
(e) Another student carries out the experiment using the same mass of recently-boiled water and beaker as before.

The output data for sensor 1 from this student's experiment are shown in Figure 3.
Figure 3

Account for the differences between these results and the way they are displayed, with those shown in Figure 2.

You should include appropriate quantitative detail in your answer.
\qquad

