

A student aligns the longer edge of a rectangular glass block along a line **LR**, as shown in **Figure 1**.

The student marks the outline of the block and directs a ray along PQ.

The student marks the direction of the emergent ray then removes the block and marks a line perpendicular to **LR** where **PQ** and **LR** intersect.

The student then marks the points W, X, Y and Z that are defined in Figure 2.

Figure 2

(a) Show that the refractive index n of the block is given by the equation

$$n = \frac{\mathsf{XZ} \times \mathsf{WY}}{\mathsf{YZ} \times \mathsf{WX}}$$

You may wish to use the equation $n = \frac{\sin \theta_1}{\sin \theta_2}$

where θ_1 and θ_2 are the angles shown in **Figure 3**.

You may also wish to illustrate your answer with a diagram.

Figure 3

(2)

The student used a experiment.	block with dimensio	ns 114 mm × 65 mn	n × 19 mm to perform	the
The student's data a	are shown in the tabl	e below.		
WX/mm	WY/mm	XZ/mm	YZ/mm	
130	78	113	44	
103	75	80	38	
90	73	63	33	
81	71	49	27	
75	69	38	22	
	66	15	10	
67	range of measuren	nents made by the s	tudent is suitable.	
	-			

Roding Valley High School

(Total 7 marks)

13

A student uses a travelling microscope to investigate the perforation holes in a block of postage stamps.

The student positions the microscope to observe the line of perforation holes along the line XY shown in **Figure 1**.

Figure 1

Figure 2 shows the positions of the cross-wires of the microscope when the student makes readings R_1 , R_2 and R_3 .

Figure 2

The student's readings are shown in the table below.

reading	position / mm
R ₁	25.51
R ₂	29.80
R 3	31.82

(a)	Determine the average separation s between the centres of adjacent perforation holes
	along line XY.

	average separation $s = $	mm	(1)
(b)	State the precision of the microscope readings.		(- /
	precision =	mm	(1)

(c) Determine the percentage uncertainty in your result for s.

percentage uncertainty = ______ %
(2)

(d)	Determine the diameter d of a perforation hole.	
	diameter d =	
		(2) (Total 6 marks)