12 A student aligns the longer edge of a rectangular glass block along a line LR, as shown in Figure 1.

Figure 1

The student marks the outline of the block and directs a ray along PQ.
The student marks the direction of the emergent ray then removes the block and marks a line perpendicular to LR where PQ and LR intersect.

The student then marks the points $\mathbf{W}, \mathbf{X}, \mathbf{Y}$ and \mathbf{Z} that are defined in Figure 2.

Figure 2

(a) Show that the refractive index n of the block is given by the equation

$$
n=\frac{\mathrm{XZ} \times \mathrm{WY}}{\mathrm{YZ} \times \mathrm{WX}}
$$

You may wish to use the equation $n=\frac{\sin \theta_{1}}{\sin \theta_{2}}$
where θ_{1} and θ_{2} are the angles shown in Figure 3.
You may also wish to illustrate your answer with a diagram.
Figure 3

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
(b) The student repeats the procedure for different directions of the incident ray PQ. The student measures $\mathbf{X Z}, \mathbf{W X}, \mathbf{Y Z}$ and $\mathbf{W Y}$ for each direction of $\mathbf{P Q}$.
State and explain how the student can use these results to obtain a value of n by a graphical method.
\qquad
\qquad
\qquad
\qquad
\qquad
(c) The student used a block with dimensions $114 \mathrm{~mm} \times 65 \mathrm{~mm} \times 19 \mathrm{~mm}$ to perform the experiment.

The student's data are shown in the table below.

$\mathbf{W X / m m}$	$\mathbf{W Y / m m}$	$\mathbf{X Z} / \mathbf{m m}$	$\mathbf{Y Z} / \mathbf{m m}$
130	78	113	44
103	75	80	38
90	73	63	33
81	71	49	27
75	66	38	22
67	15	10	

Explain whether the range of measurements made by the student is suitable.
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

A student uses a travelling microscope to investigate the perforation holes in a block of postage stamps.

The student positions the microscope to observe the line of perforation holes along the line XY shown in Figure 1.

Figure 1

Figure 2 shows the positions of the cross-wires of the microscope when the student makes readings R_{1}, R_{2} and R_{3}.

Figure 2

The student's readings are shown in the table below.

reading	position $/ \mathbf{m m}$
R_{1}	25.51
R_{2}	29.80
R_{3}	31.82

(a) Determine the average separation s between the centres of adjacent perforation holes along line $X Y$.
average separation $s=$ \qquad mm
(b) State the precision of the microscope readings.
precision = \qquad mm
(c) Determine the percentage uncertainty in your result for s.
percentage uncertainty =
\qquad \%
(d) Determine the diameter d of a perforation hole.

$$
\text { diameter } d=\ldots \mathrm{mm}
$$

(Total 6 marks)

