



The system is suspended from one end of a thread passing over a pulley.

The other end of the thread is tied to a weight.

14

The system is shown in **Figure 1** with the mass at the equilibrium position.

## The spring constant (stiffness) is the same for each spring.

(a) Explain why the position of the fiducial mark shown in **Figure 1** is suitable for this experiment.

The table below shows the measurements recorded by the student.

| Time for 20 oscillations of the mass-spring system/s |      |      |      |      |
|------------------------------------------------------|------|------|------|------|
| 22.9                                                 | 22.3 | 22.8 | 22.9 | 22.6 |

(b) (i) Determine the percentage uncertainty in these data.

percentage uncertainty = \_\_\_\_\_

(ii) Determine the natural frequency of the mass-spring system.

natural frequency = \_\_\_\_\_

(1)

(3)

(c) The student connects the thread to a mechanical oscillator. The oscillator is set in motion using a signal generator and this causes the mass–spring system to undergo forced oscillations.

A vertical ruler is set up alongside the mass–spring system as shown in **Figure 2**. The student measures values of *A*, the amplitude of the oscillations of the mass as *f*, the frequency of the forcing oscillations, is varied.



Figure 2

A graph for the student's experiment is shown in **Figure 3**.

(i) Add a suitable scale to the frequency axis.You should refer to your answer in part (b)(ii) and note that the scale starts at 0 Hz.

(1)

Deduce from Figure 3 the amplitude of the oscillations of X, the point where the mass–spring system is joined to the thread.
You should assume that the length of the thread is constant.





| (d) | (i) | State and explain how the student was able to determine the accurate shape of the graph in the region where <i>A</i> is a maximum. |
|-----|-----|------------------------------------------------------------------------------------------------------------------------------------|
|     |     |                                                                                                                                    |
|     |     |                                                                                                                                    |
|     |     |                                                                                                                                    |

(ii) The student removes one of the springs and then repeats the experiment.

Add a new line to **Figure 3** to show the graph the student obtains.

You may wish to use the equation  $f = \frac{1}{2\pi} \sqrt{\frac{k}{m}}$ .

(2) (Total 11 marks)

(2)

An experiment is carried out to find out how *d*, the diameter of the stream of water, depends on *s*, the vertical distance the water has fallen. To avoid problems due to the effects of the tap outlet, *s* is measured from a reference level below the outlet.

The arrangement used for the experiment is shown in Figure 1

15



 (a) The distance s is measured to the nearest mm using a vertical ruler. The diameter d is measured to the nearest 0.1 mm using a travelling microscope. Suggest why a travelling microscope was chosen to measure d rather than vernier callipers.

(1)

(b) The data from the experiment suggest that  $s = kd^n$  where k is a constant and n is an integer.

These data are used to plot the graph in Figure 2.



Figure 2

(i) Determine *n* using **Figure 2**.

(2)

n \_

(ii) Explain how the numerical value of *k* can be obtained from **Figure 2**.

(iii) Deduce the unit of *k*.

unit of *k* = \_\_\_\_\_

(1) (Total 5 marks)

(1)