waves meet in phase and add to form a resultant wave.

(a) State the amplitude of the resultant wave
(b) Calculate the ratio
intensity of wave \mathbf{B} : intensity of wave \mathbf{A}.

This question is about an experiment to measure the wavelength of microwaves.
A microwave transmitter \mathbf{T} and a receiver \mathbf{R} are arranged on a line marked on the bench.
A metal sheet \mathbf{M} is placed on the marked line perpendicular to the bench surface.
Figure 1 shows side and plan views of the arrangement.
The circuit connected to \mathbf{T} and the ammeter connected to \mathbf{R} are only shown in the plan view.
Figure 1
side view

The distance y between \mathbf{T} and \mathbf{R} is recorded.
\mathbf{T} is switched on and the output from \mathbf{T} is adjusted so a reading is produced on the ammeter as shown in Figure 2.

Figure 2

\mathbf{M} is kept parallel to the marked line and moved slowly away as shown in Figure 3.
Figure 3

The reading decreases to a minimum reading which is not zero.
The perpendicular distance x between the marked line and \mathbf{M} is recorded.
(a) The ammeter reading depends on the superposition of waves travelling directly to \mathbf{R} and other waves that reach \mathbf{R} after reflection from \mathbf{M}.

State the phase difference between the sets of waves superposing at \mathbf{R} when the ammeter reading is a minimum.
Give a suitable unit with your answer.
\qquad
(b) Explain why the minimum reading is not zero when the distance x is measured.
\qquad
\qquad
\qquad
(c) When \mathbf{M} is moved further away the reading increases to a maximum then decreases to a minimum.

At the first minimum position, a student labels the minimum $n=1$ and records the value of x.
The next minimum position is labelled $n=2$ and the new value of x is recorded.
Several positions of maxima and minima are produced.
Describe a procedure that the student could use to make sure that \mathbf{M} is parallel to the marked line before measuring each value of x.
You may wish to include a sketch with your answer.
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

