In the Rutherford scattering experiment most α particles passed through the foil undeflected. 10 What is a correct deduction from this result?

11

D

critical

Α	Most of the mass of an atom is within the	0			
в	The diameter of the nucleus is much le diameter of the atom.	0			
С	The nucleus has a positive charge.	0			
D	The charge of the atom is neutral.		0		
				(Total 1 mark)	
The mod	lerator of some nuclear reactors is made f	rom graphite.			
What is the principal purpose of the graphite?					
Α	to absorb all the heat produced	0			
В	to decrease the speed of neutrons	0			
С	to absorb α and β radiation	0			
п	to prevent the reactor from going				

0

(Total 1 mark)

(a) The exposure of the general public to background radiation has changed substantially over the past 100 years.
 State one source of radiation that has contributed to this change.

(b) A student measures background radiation using a detector and determines that background radiation has a mean count-rate of 40 counts per minute. She then places a γ ray source 0.15 m from the detector as shown below.

With this separation the average count per minute was 2050.

The student then moves the detector further from the γ ray source and records the count-rate again.

(i) Calculate the average count-rate she would expect to record when the source is placed 0.90 m from the detector.

count-rate = _____ min⁻¹

(3)

(1)

(ii) The average count per minute of 2050 was determined from a measurement over a period of 5 minutes. Explain why the student might choose to record for longer than 5 minutes when the separation is 0.90 m.

(1)

(iii)	When the detector was moved to 0.90 m the count-rate was lower than that calculated in part (b)(i) . It is suggested that the source may also emit β particles of the source may also emit β par	es.
	Explain how this can be checked.	
		-
		-
		-
		-
		-
		-
		- (2
		Total 7 marks

The diagram shows how the binding energy per nucleon varies with nucleon number.

13

(a)	(i)	Fission and fusion are two nuclear processes in which energy can be released. Explain why nuclei that undergo fission are restricted to a different part of the graph than those that undergo fusion.				
	(ii)	Explain, with reference to the diagram, why the energy released per nucleon from fusion is greater than that from fission.				
(b)	(i)	Calculate the mass difference, in kg, of the ${}^{16}_{8}$ O nucleus. mass of ${}^{16}_{8}$ O nucleus = 15.991 u				

mass difference = _____ kg

(2)

(2)

(2)

(ii) Using your answer to part **(b)(i)**, calculate the binding energy, in MeV, of an oxygen ¹⁶₈O nucleus.

binding energy = _____ MeV

(1)

(iii) Explain how the binding energy of an oxygen ${}^{16}_{8}$ O nucleus can be calculated with information obtained from the diagram.

(a) Which ionizing radiation produces the greatest number of ion pairs per mm in air? Tick (\checkmark) the correct answer.

α particles	
β particles	
γ rays	
X-rays	

(1)

(b) (i) Complete the table showing the typical maximum range in air for α and β particles.

Type of radiation	Typical range in air / m
α	
β	

(2)

/ source detects a noticeably further away from the source.
ontaining americium which is an
s dust to an unprotected human
(Total 6 marl
- -

(a) (i) The half-life of carbon-14 is 5740 years. Calculate the radioactive decay constant in yr^{-1} of carbon-14.

decay constant _____ yr⁻¹

(1)

(ii) A piece of wood taken from an axe handle found on an archaeological site has 0.375 times as many carbon-14 atoms as an equal mass of living wood.
 Calculate the age of the axe handle in years.

					ag	je	yr	
								(3)
	(b)	Sugg	jest why	the method of ca	rbon dating is likely to b	e unreliable if a sample	is:	
		(i)	less tha	an 200 years old,				
		(ii)	more th	an 60 000 years	old.			
								(2)
							(Tota	ıl 6 marks)
16	Whic	h of th	ne follow	ing is equal to $\frac{ra}{ra}$	lius of a nucleus of $\frac{125}{51}$ Sb dius of a nucleus of $\frac{64}{20}$ Zn	?		
	Α	1	.19	0				
	В	1	.25	0				
	С	1	.33	0				
	D	1	.40	0				

(Total 1 mark)