0 6.1	Explain, in terms of bind	ng energy, why energ	y can be released	when two nuclei
				[2 marks]
6.2	During the collapse of a energy. The equation fo	supermassive star, he r this reaction is	elium-3 and oxyge	n-17 fuse to release
		${}^{3}_{2}\text{He} + {}^{17}_{8}\text{O} \rightarrow {}^{20}_{10}\text{N}$	e	
	Table 2 gives data for th	ese nuclei.		
		Table 2		
	Nucl	eus	Mass / u	
	³ ₂ H	e	3.01603	
	¹⁷ / ₈	D	16.99913	
	20 10 h	le	19.99244	
	Calculate, in J, the energ	y released when this	reaction occurs.	[2 marks]
		energy relea	ased =	J

box

9

06.4	$^3_2{\rm He}$ can undergo fusion reactions with either $^{34}_{16}{\rm S}$ or $^{17}_8{\rm O}$ at the same temperature in a star.	
	The nucleus has properties that depend on its proton number and its nucleon number. These properties affect the fusion reaction.	
	Discuss, for this star, how these properties affect the rate of fusion of ${}^{34}_{16}$ S with ${}^{3}_{2}$ He	
	compared to the rate of fusion of $\frac{17}{8}$ O with $\frac{3}{2}$ He. [3 marks]	
		[.
	END OF SECTION A	

Ī

28	X and Y are two radioactive nuclides. X has a half-life of 3.0 minutes and Y has a of 9.0 minutes.	ı half-life	Do not write outside the box
	Two freshly prepared samples of X and Y start decaying at the same time. After 18 minutes the number of radioactive nuclei in both samples is the same. The sample of Y initially contained N radioactive nuclei.		
	What was the initial number of radioactive nuclei in the sample of ${f X}$?	[1 mark]	
	A 4N		
	B 16N		
	C 32 <i>N</i> \bigcirc		
	D $64N$		
29	What is the main purpose of a moderator in a thermal nuclear reactor?	[1 mark]	
	A to shield the surroundings from ionising radiations		
	B to decrease the number of fission chain reactions		
	C to decrease neutron speeds		
	D to prevent the core from overheating		
30	In the core of a nuclear reactor, the mass of fuel decreases at a rate of $9.0 \times 10^{-6} \text{ kg hour}^{-1}$ due to nuclear reactions. What is the maximum power output of the reactor?		
		[1 mark]	
	A $2.3 \times 10^8 \mathrm{W}$		
	B 1.4×10^{11} W		
	C $8.1 \times 10^{11} \text{ W}$		
	D 2.9×10^{15} W		
	Turn over for the next question		

IB/M/Jun21/7408/2

06	A thermal nuclear reactor uses a moderator to lower the kinetic energy of fast-moving neutrons.
06.1	Explain why the kinetic energy of neutrons must be reduced in a thermal nuclear reactor. [1 mark]
06.2	As a result of a collision with an atom of a particular moderator, a neutron loses 63% of its kinetic energy.
	A neutron has an initial kinetic energy of 2.0 MeV.
	Calculate the kinetic energy of the neutron after five collisions. [2 marks]
	kinetic energy =eV
	Question 6 continues on the next page

Do not write outside the box

Do not write
outside the
box

06.3	The kinetic energy of a neutron in a thermal nuclear reactor is reduced from about 2 MeV to about 1 eV .
	Explain why the number of collisions needed to do this depends on the nucleon
	[2 marks]

One fission process which can occur in a thermal nuclear reactor is represented by the equation

$${}^{235}_{92}\text{U} + {}^{1}_{0}\text{n} = {}^{142}_{54}\text{Xe} + {}^{90}_{38}\text{Sr} + {}^{1}_{0}\text{n}$$

Calculate in MeV the energy released in this fission process.

mass of $^{235}_{92}U$ = 235.044 u

mass of ${}^{142}_{54}$ Xe = 141.930 u

mass of ${}^{90}_{38}$ Sr = 89.908 u

mass of ${}^1_0 n = 1.0087 u$

[3 marks]

Do not write outside the

box

energy released = _____ MeV

Question 6 continues on the next page

Turn over ►

