0 6	A thermal nuclear reactor uses a moderator to lower the kinetic energy of fast-moving neutrons.
0 6 . 1	Explain why the kinetic energy of neutrons must be reduced in a thermal nuclear reactor. [1 mark]
06.2	As a result of a collision with an atom of a particular moderator, a neutron loses 63% of its kinetic energy.
	A neutron has an initial kinetic energy of 2.0 MeV.
	Calculate the kinetic energy of the neutron after five collisions. [2 marks]
	kinetic energy =eV
	Question 6 continues on the next page

Do not write outside the box

Do not write
outside the
box

06.3	The kinetic energy of a neutron in a thermal nuclear reactor is reduced from about 2 MeV to about 1 eV.				
	Explain why the number of collisions needed to do this depends on the nucleon				
	[2 marks]				

One fission process which can occur in a thermal nuclear reactor is represented by the equation

$${}^{235}_{92}\text{U} + {}^{1}_{0}\text{n} = {}^{142}_{54}\text{Xe} + {}^{90}_{38}\text{Sr} + {}^{1}_{0}\text{n}$$

Calculate in MeV the energy released in this fission process.

mass of $^{235}_{92}U$ = 235.044 u

mass of ${}^{142}_{54}$ Xe = 141.930 u

mass of ${}^{90}_{38}$ Sr = 89.908 u

mass of ${}^1_0 n = 1.0087 u$

[3 marks]

Do not write outside the

box

energy released = _____ MeV

Question 6 continues on the next page

Turn over ►

1 8	When a small radioactive source is placed in a cloud chamber, straight tracks about 4 cm long are observed. The same source is placed 10 cm from a Geiger tube and a count rate is detected. When a sheet of aluminium 5 mm thick is placed between the source and the Geiger tube the count rate falls to the background count rate.							
	Whic	h typ	es of radiation are emitted by	the source?	[1 mark]			
					[1 mark]			
	Α α,	βan	dγ	0				
	Ββ	and γ	,	0				
	C α	and γ	,	0				
	D α	and f	3	0				
19	9 A parallel-plate capacitor is made by inserting a sheet of dielectric material between two plates. Both plates are in contact with the sheet.							
	Which relative permittivity and sheet thickness give the greatest capacitance? [1 mark]							
			-					
	-		Relative permittivity	Thickness / mm				
		Α	2	0.40	0			
		в	3	0.90	0			
		С	4	1.0	0			
		D	6	1.6	0			

3 0

A deuterium nucleus and a tritium nucleus fuse together to form a helium nucleus and a

particle X. The equation for this process is:

3 1 What effect are the control rods intended to have on the average kinetic energy and number of fission neutrons in a thermal nuclear reactor?

[1 mark]

	Average kinetic energy of fission neutrons	Number of fission neutrons	
A	unchanged	unchanged	0
в	reduced	unchanged	0
с	unchanged	reduced	0
D	increased	reduced	0

END OF QUESTIONS

25