

		Do not write
0 5.2	The peak pd of the alternating supply is $10.0\ kV.~$ The proton leaves the cyclotron with kinetic energy of $14\ MeV.~$	outside the box
	Determine the number of times the proton moves across the gap before it leaves the cyclotron.	
	[1 mark]	
	number of times =	
	The radius of the outermost semicircular path of the proton is R and the proton leaves with a maximum kinetic energy E_k .	
0 5.3	Show that $E_{\mathbf{k}}$ is given by	
	$E_{\rm k} = \frac{e^2 B^2 R^2}{2m_{\rm p}}$	
	[3 marks]	

0 5. **4** A hospital decides to purchase a cyclotron in order to manufacture its own radioactive isotopes using high-speed protons.

The required minimum kinetic energy of the emerging protons is 11 MeV. The cost of a cyclotron is approximately proportional to $E_k^{1.5}$.

The cost of a 10 MeV cyclotron is about £2.3 million.

 Table 1 gives information for three cyclotrons X, Y and Z.

Table 1

Cyclotron	<i>B I</i> T	<i>R</i> / m
x	1.3	0.38
Y	1.1	0.50
Z	0.5	0.60

Deduce which cyclotron ${\bf X},\,{\bf Y}$ or ${\bf Z}$ will satisfy the energy requirement for the lowest cost.

Go on to determine the approximate cost of this cyclotron.

[4 marks]

cyclotron = _____

cost =

0 6.1	Explain, in terms of bind	ing energy, why er	ergy can be released	when two nuclei
				[2 marks]
6.2	During the collapse of a energy. The equation for	supermassive star or this reaction is	, helium-3 and oxygei	n-17 fuse to release
		${}^3_2\text{He} + {}^{17}_8\text{O} \rightarrow {}^{20}_{10}$) Ne	
	Table 2 gives data for the	nese nuclei.		
		Table 2		
	Nucl	eus	Mass / u	
	³ ₂ H	le	3.01603	
	17	0	16.99913	
	20 10 ¹	Ne	19.99244	
	Calculate, in J, the energ	gy released when t	his reaction occurs.	[2 marks]
		energy r	eleased =	J

box

9

06.4	$^3_2{\rm He}$ can undergo fusion reactions with either $^{34}_{16}{\rm S}$ or $^{17}_{-8}{\rm O}$ at the same temperature in a star.	C
	The nucleus has properties that depend on its proton number and its nucleon number. These properties affect the fusion reaction.	
	Discuss, for this star, how these properties affect the rate of fusion of ${}^{34}_{16}$ S with ${}^{3}_{2}$ He	
	compared to the rate of fusion of $\frac{17}{8}$ O with $\frac{3}{2}$ He. [3 marks]	
		Г.
	END OF SECTION A	

Ī

28	X and Y are two radioactive nuclides. X has a half-life of 3.0 minutes and Y has a of 9.0 minutes.	ı half-life	Do not write outside the box
	Two freshly prepared samples of X and Y start decaying at the same time. After 18 minutes the number of radioactive nuclei in both samples is the same. The sample of Y initially contained N radioactive nuclei.		
	What was the initial number of radioactive nuclei in the sample of ${f X}$?	[1 mark]	
	A 4N		
	B 16N		
	C 32 <i>N</i> \bigcirc		
	D $64N$		
29	What is the main purpose of a moderator in a thermal nuclear reactor?	[1 mark]	
	A to shield the surroundings from ionising radiations		
	B to decrease the number of fission chain reactions		
	C to decrease neutron speeds		
	D to prevent the core from overheating		
30	In the core of a nuclear reactor, the mass of fuel decreases at a rate of $9.0 \times 10^{-6} \text{ kg hour}^{-1}$ due to nuclear reactions. What is the maximum power output of the reactor?		
		[1 mark]	
	A $2.3 \times 10^8 \mathrm{W}$		
	B 1.4×10^{11} W		
	C $8.1 \times 10^{11} \text{ W}$		
	D 2.9×10^{15} W		
Turn over for the next question			

IB/M/Jun21/7408/2