Do not write outside the box

29	Which provides evidence for the existence of energy levels in nuclei?	[1 mark]	Do not write outside the box
	A the Rutherford alpha particle scattering experiment $ imes$	0	
	B the existence of X-ray line spectra	0	
	c the existence of gamma radiation	\mathbf{X}	
	D electron diffraction by crystals X so high any	0	
3 0	Which is not true for gamma radiation?	[1 mark]	
	A It is more penetrating than alpha or beta radiation of the same energy through the same material.	0	
	B Its intensity is inversely proportional to the square of the distance from its source.	0	
	C It is emitted with discrete frequencies. \checkmark	0	
	D When it is absorbed it makes the absorber radioactive. $ imes$	\bowtie	
3 1	In a thermal reactor, induced fission occurs when a ${}^{235}_{92}\mathrm{U}\mathrm{nucleus}\mathrm{capt}$	tures a neutron.	
	Which statement is true?	[1 mark]	
	A The moderator absorbs excess neutrons. \times	0	
	B A large number of neutrons should be produced per fission to sustain the reaction. \succ	0	
	C Slow neutrons are required for this induced fission.	X	
	D The control rods slow down neutrons.	0	25
	END OF QUESTIONS		

31

IB/M/Jun23/7408/2

Turn over ►

0 6 . 1 Nuclear radii can be estimated using either alpha particles or high-energy electrons.

State **two** advantages of using high-energy electrons rather than alpha particles for this estimate.

[2 marks]

Do not write outside the

box

1 as attractive need less energy to get towards the nucleus

2 easier to get to high speeds needed for a short wavelength meaning better resolution

Question 6 continues on the next page

Turn over ►

2 1

0 7 . 1	Carbon is used as the moderator in some thermal nuclear reactors.	Do not write outside the box		
	Identify one other material commonly used as a moderator.			
	Udter, heavy water, Be			
0 7.2	State two benefits of slowing down the neutrons released during fission. [2 marks]			
	1 more liter neutron u absorbed			
	2 faster peiltons more likely to damage structure			
0 7.3	The collision of a neutron with the nucleus of a moderator atom is modelled using two gliders on a horizontal frictionless air track.			
	In Figures 13 and 14 the glider N of mass m_N represents the neutron and the glider M of mass m_M represents the moderator nucleus.			
Figure 13 shows glider N travelling with initial speed u towards the stationary glider M .				
	Figure 13			
	before $m_{N} \rightarrow u$ m_{M} collision frictionless air track			
The gliders collide. N rebounds with speed v as shown in Figure 14 . Figure 14				

Question 7 continues on the next page

Turn over ►

Г

26	Alpha particle scattering can be demonstrated using a thin gold foil.		Do not write outside the box
	Which statement about this demonstration is not true?	[1 mark]	
_			
T	A The foil is thin enough to assume that alpha particles are deflected only once.	0	
Т	B Nuclei are more massive than alpha particles which allows the alpha particles to be deflected by more than 90° .	0 💿	
F	c The number of alpha particles deflected backwards is greater than the number that pass straight through the foil.	6	
T	Deflections of alpha particles by electrons in the foil are much smaller than deflections due to nuclei.	0	
2 7	A transformer for use in a 230 V ac supply is 90% efficient. The transformer provides a current of 3.00 A at 12.0 V.		
	What is the current in the primary coil?	[1 mark]	
	A 0.141 A		
	B 0.156 A		
	C 0.174 A		
/	D 5.75 A		
28	The random nature of radioactive decay means that it is never possible to predict	[1 mark]	
	A when a particular nucleus will decay.	6	
	b whether a β^- particle or a β^+ particle is emitted.	0	
	the approximate time taken for the activity to decrease to a specified value.	0	
	the approximate thickness of an absorber needed to reduce the count rate to a specified value.	0	

box

