1 An electromagnetic wave enters a fibre-optic cable from air. On entering the cable, the wave slows down to three-fifths of its original speed.

What is the refractive index of the core of the fibre-optic cable?
A 0.67
B 1.33
C 1.50

\bigcirc
$r=\frac{c}{c_{s}}=\frac{1}{3 / s}=1.6$
\bigcirc
\bigcirc
0
(Total 1 mark)
2 A ray of light is incident on a glass-air boundary of a rectangular block as shown.

The refractive index of this glass is 1.5
critical
angle $\sin \theta_{c}=n_{L}$
not to scale

The refractive index of air is 1.0
The angle of incidence of the light at the first glass-air boundary is 44°
What is the path of the ray of light?

A+ $2^{n d}$ normal

(Total 1 mark)

The diagram below shows three transparent glass blocks \mathbf{A}, \mathbf{B} and \mathbf{C} joined together. Each glass block has a different refractive index.

(a) State the two conditions necessary for a light ray to undergo total internal reflection at the boundary between two transparent media. condition 1 first material mont he more optically dense.
dongle of incideme $>$
cinteid angle
not

jus
just
denser must he optically
(b) Calculate the speed of light in glass \mathbf{A}. refractive index of glass $\mathbf{A}=1.80$

$$
c_{5}=\frac{3 \times 10^{8}}{1.8}
$$

(c) Show that angle θ is about 30°.

Calculate the critical angle between glass \mathbf{A} and glass \mathbf{C}.

$$
\sin \theta_{c}=\frac{n_{2}}{n_{1}}=\frac{1 \cdot 4}{1 \cdot 8} \quad 51(2, f)_{\text {degrees }}^{\text {critical angle }}
$$

(e) (i) State and explain what happens to the light ray when it reaches the boundary between glass \mathbf{A} and glass \mathbf{C}.

(ii) On the diagram above continue the path of the light ray after it strikes the boundary between glass \mathbf{A} and glass \mathbf{C}.
(Total 11 marks)

1

D

2

D
(a) $\quad n_{1}>n_{2} \checkmark$

Allow correct reference to 'optical density'
(incident) angle > critical angle (allow θ_{c} not 'c')
OR critical angle must be exceeded \checkmark

Do not allow: 'angle passes the critical angle'

$$
\text { Allow } n_{A}>n_{B}
$$

(b)

$$
\begin{aligned}
& \left(n_{s}=\frac{c}{c_{s}}\right) \\
& \left(c_{A}=\frac{c}{n_{A}}=\right) \frac{3.00 \times 10^{8}}{1.80}
\end{aligned}
$$

For second mark, don't allow 1.6×10^{8}
Allow 1.66×10^{8} or 1.70×10^{8}
Allow 1.6. $\times 10^{8}$

$$
\left(=1.667 \times 10^{8}\right)=1.67 \times 10^{8}\left(\mathrm{~ms}^{-1}\right) \downarrow
$$

(c) $\sin 72=1.80 \sin \theta \checkmark$

$$
\begin{aligned}
(\sin \theta= & \left.\frac{\sin 72}{1.80}=\frac{0.9510565}{1.8}=0.52836\right) \\
& \text { Correct answer on its own gets both marks }
\end{aligned}
$$

$$
\begin{aligned}
\theta=31.895= & 31.9 \text { correct answer }>=2 \text { sf seen } \checkmark \\
& \text { Do not allow } 31 \text { for second mark } \\
& \text { Allow } 31.8-32
\end{aligned}
$$

(d) $\begin{aligned} & 1.80 \sin \theta_{c}=1.40 \text { OR } \quad \sin \theta_{c}=\frac{1.40}{1,80} \\ & \theta_{c}=51.058=51.1^{\circ} \quad \checkmark(\text { accept } 51)^{\circ}\end{aligned}$ $\theta_{c}=51.058=51.1^{\circ} \checkmark(\text { accept } 51)^{\circ}$

Correct answer on its own gets both marks
Don't accept 50 by itself
$\mathbf{O R}=0.778 \checkmark$
(e) (i) $22+$ their $(c)(22+31.9=53.9) \checkmark$ $53.9>(51.1)$ critical angle \checkmark

If $c+22$ < d then TIR expected
If $c+22>d$ then REFRACTION expected

OR

$\mathrm{c}+22<$ their $\mathrm{d}\left(\theta_{\mathrm{c}}\right) \checkmark$ ecf from (c) and (d) angle less than critical angle \checkmark

Allow max 1 for 'TIR because angle > critical angle' only if their $d>$ $c+22$
(ii) TIR angle correct \checkmark ecf from e(i) for refraction answer

Tolerance: horizontal line from normal on the right / horizontal line from top of lower arrow.
If ei not answered then ecf (d). If ei and d not answered then ecf c

