A $3.3 \times 10^{5} \mathrm{~m}^{2} \mathrm{~s}^{-2}$ \square
B $4.3 \times 10^{5} \mathrm{~m}^{2} \mathrm{~s}^{-2}$
\bigcirc $=1-65 \times 1 E$

D $\quad 8.7 \times 10^{5} \mathrm{~m}^{2} \mathrm{~s}^{-2}$

$$
\text { so } C_{r_{m}}=\frac{0}{8}=4 m / J \cdots m s s=804_{\text {Total } 1 \text { mark) }}^{2}
$$

2

2 A transparent illuminated box contains small smoke particles and air. What is the cause of this observation of Brownian motion?

A Smoke particles gaining kinetic energy by the absorption of light. \square
B Collisions between smoke particles and air molecules. \square

C Smoke particles moving in convection currents caused by the air being heated by the light.

D The smoke particles moving randomly due to their temperature. \square
(Total 1 mark)

Which diagram shows the correct change in momentum $\Delta m v$ that occurs during the collision?

A 0
B 0
C 0
D 0

4 Specimens \mathbf{P} and \mathbf{Q} of the same gas exert the same pressure. \mathbf{P} is at a temperature of 280 K and contains 10^{20} molecules per unit volume. The temperature of \mathbf{Q} is 350 K .
What is the number of molecules per unit volume in \mathbf{Q} ?
A $\quad 0.09 \times 10^{20}$
-
B $\quad 0.75 \times 10^{20}$

\square

So

$=\frac{N R T}{V}$

(C) 0.80×10^{20}

0

$$
\begin{aligned}
\operatorname{Set} V_{P} & =V_{Q} \\
& \text { so } \quad N_{Q}=\frac{N_{P} T_{P}}{T_{Q}}
\end{aligned}
$$

5 The composition of a carbon dioxide $\left(\mathrm{CO}_{2}\right)$ molecule is one atom of ${ }_{6}^{12} \mathrm{C}$ and two atoms of ${ }_{8}^{18} \mathrm{O}$. What is the number of molecules of CO_{2} in 2.2 kg of the gas? $\mathrm{Fm}_{\mathrm{m}}=12+(16 \times 2)=44$

A 1.0×10^{22}
B 3.0×10^{22}

D 4.7×10^{25}

0

o
. moles $=2.2 \times 10^{5} / 44 \mathrm{~g}$ $=50$

(Total 1 mark)
6 (a) A number of assumptions are made when explaining the behaviour of a gas using the molecular kinetic theory model.

State one assumption about the size of molecules.

The graph shows how the pressure changes with volume for a fixed mass of an ideal gas.
At \mathbf{A} the temperature of the gas is $27^{\circ} \mathrm{C}$. The gas then undergoes two changes, one from \mathbf{A} to \mathbf{B} and then one from \mathbf{B} to \mathbf{C}.

(b) Calculate the number of gas molecules trapped in the cylinder using information from the initial situation at \mathbf{A}.
$P V=N B T \Rightarrow$
$N=p \frac{V}{k T}$

$$
1.3 \times 1 \theta^{L L}
$$

number of molecules $=$ \qquad
(c) Calculate, in K, the change in temperature of the gas during the compression that occurs between \mathbf{A} and \mathbf{B}.

(d) Deduce whether the temperature of the gas changes during the compression from \mathbf{B} to \mathbf{C}.

$$
\begin{aligned}
\frac{P_{B} V_{B}=P_{C} V_{C}}{T_{B}} \quad \text { \& } T_{C}=T_{B} \text { then } P_{B} V_{B}=P_{C} V_{C} \\
0.5 \times 10^{-3} \times 1 \times 10^{5}=50 \\
0
\end{aligned} \quad \begin{aligned}
& 0.3 \times 10^{-3} \times 2 \times 10^{5}=60
\end{aligned}
$$

(e) Compare the work done on the gas during the change from \mathbf{A} to \mathbf{B} with that from \mathbf{B} to \mathbf{C} on the graph.
Area under graph $P \Delta V$

$$
N_{m}^{-2} \times m^{3}=N_{\times n} \text { er Find }
$$

\qquad
\qquad
\qquad
\qquad
\qquad
(3)
(Total 10 marks)

Mark schemes

1
 C

2
 B

3 B

4
C

6 (a) The volume / size of the gas molecules is negligible / point mass or point molecule

Or molecules are point masses
Or small compared to the volume / size occupied by of the gas \checkmark owtte

No mark for all the same size or spherical.
Without the comparison the word used must suggest extremely small.
Zero volume is wrong.
(b) (using $N=P V / k T)$
$N=\left(1.0 \times 10^{5} \times 0.70 \times 10^{-3} /\left(1.38 \times 10^{-23} \times 300\right) \checkmark(\right.$ first mark is for converting the temperature to kelvin and using it in a valid equation)
$N=1.7 \times 10^{22}$ molecules $\checkmark\left(1.69 \times 10^{22}\right.$ molecules $)$
Alternatively (using $n=P V / R T$)
$n=\left(1.0 \times 10^{5} \times 0.70 \times 10^{-3} / 8.31 \times 300\right)=0.028 \mathrm{~mol} \checkmark$ (first mark is for converting the temperature to kelvin and using it in a valid equation)
$N\left(=n N_{\mathrm{A}}=0.028 \times 6.02 \times 10^{23}\right)=1.7 \times 10^{22}$ molecules $\checkmark(1.69 \times$ 10^{22} molecules)

Correct answer scores both marks
Power of 10 issue = AE
Temperature conversion $=P E$
(c) (using $T_{\mathrm{B}}=T_{\mathrm{A}} V_{\mathrm{B}} / V_{\mathrm{A}}$)
$T_{\mathrm{B}}=300 \times 0.50 / 0.70=214(\mathrm{~K}) \checkmark$
Change in temperature $(=214-300)=(-) 86(\mathrm{~K}) \checkmark$
Or
$T_{\mathrm{B}}(=P V / N k)=1.0 \times 10^{5} \times 0.50 \times 10^{-3} /\left(1.38 \times 10^{-23} \times 1.69 \times 10^{22}\right)$
$=214(\mathrm{~K}) \checkmark$
Change in temperature $(=214-300)=(-) 86(\mathrm{~K}) \checkmark(\pm 1 \mathrm{~K})$
Or
$T_{\mathrm{B}}=(P V / n R)=1.0 \times 10^{5} \times 0.50 \times 10^{-3} /(0.028 \times 8.31)$
$=215(\mathrm{~K}) \checkmark$
Change in temperature $(=215-300)=(-) 85(\mathrm{~K}) \sqrt{ }$
Correct answer scores both marks
Let the last mark stand alone provided an attempt at calculating T_{B} is made.
Also allow working in Celsius for this last stand-alone mark.
(d) An appropriate calculation might be:
(If the temperature remained constant $P_{\mathrm{C}}=P_{\mathrm{B}} V_{\mathrm{B}} / V_{\mathrm{C}}$)
$P_{\mathrm{C}}=1.0 \times 10^{5} \times 0.50 \times 10^{-3} / 0.30 \times 10^{-3}=1.7 \times 10^{5}(\mathrm{~Pa}) \checkmark$
(but the pressure at C is higher than this so) the temperature at C is different / higher / not constant \checkmark

Or
(If the temperature remained constant $P_{\mathrm{C}} V_{\mathrm{C}}$ would equal $P_{\mathrm{B}} \vee_{\mathrm{B}}$)
$P_{\mathrm{B}} \mathrm{V}_{\mathrm{B}}=1.0 \times 10^{5} \times 0.50 \times 10^{-3}=50$
$P_{\mathrm{C}} V_{\mathrm{C}}=2.05 \times 10^{5} \times 0.30 \times 10^{-3}=61 \checkmark$
($P V$ is not equal) the temperature at C is different / higher / not constant \checkmark

Or a full calculation can be given using $P V / T=$ constant.
$P_{\mathrm{B}} V_{\mathrm{B}} / T_{\mathrm{B}}=1.0 \times 10^{5} \times 0.5 \times 10^{-3} / 214=\left(0.234 \mathrm{~J} \mathrm{~K}^{-1}\right)$
$T_{\mathrm{C}}=P_{\mathrm{C}} V_{\mathrm{C}} /$ constant $=2.05 \times 10^{5} \times 0.30 \times 10^{-3} / 0.234$
$T_{\mathrm{C}}=263 \mathrm{~K} \checkmark$
the temperature at C is different / higher / not constant \checkmark
On its own higher temperature scores 0. Additionally there must be a reference to a correct calculation to obtain the last mark.
The question only requires the candidate to spot a change. The two marks are for each side of a comparison.
Complete figures are not always required. For example in the last alternative the common factor 10^{5} could be missing.
2nd alternative may come from a ratio.
Depending on the sig figs used in the substitution of data the temperature has a range 256-270 K
$P V=N k T$ may be used as another alternative.
On a few occasions the full paper may be required to view.
(e) work done on gas from \mathbf{A} to \mathbf{B} (using $W=P \Delta V$ or $W=$ area under the graph $\left.=1.0 \times(0.70-0.50) \times 10^{-3}\right)=20(\mathrm{~J}) \checkmark$ giving a reference to the work done being the area under the graph \checkmark

The third mark can be obtained in the following ways:
calculating the area indicated corresponds to the additional work done on the gas from \mathbf{B} to \mathbf{C}

$\left(166 \mathrm{~mm}^{2}\right.$ where $\left.1 \mathrm{~mm}^{2}=0.05 \mathrm{~J}\right)=8.3 \mathrm{~J} \mathrm{~V}$ (allow 8.0 - 10.0 J)

Or
The total work done $\left(566 \mathrm{~mm}^{2}\right.$ where $\left.1 \mathrm{~mm}^{2}=0.05 \mathrm{~J}\right)=28.3(\mathrm{~J}) \checkmark$
(allow 28.0 - 30.0 J)
This second mark can be obtained from an attempt at an area calculation that involves the curved section of the graph.
NB 'additional work' must be quoted to give mark for 8 - 10 J .
This 3rd mark is for a correct evaluation and not for details of the process.

