| _ |     |  |
|---|-----|--|
| ı |     |  |
| ı | 4   |  |
| ı | - 1 |  |
|   | 1   |  |

The average mass of an air molecule is  $4.8 \times 10^{-26}$  kg

What is the mean square speed of an air molecule at 750 K?

- **A**  $3.3 \times 10^5 \text{ m}^2 \text{ s}^{-2}$
- 0

**B**  $4.3 \times 10^5 \,\mathrm{m}^2 \,\mathrm{s}^{-2}$ 

0

**C**  $6.5 \times 10^5 \,\mathrm{m}^2 \,\mathrm{s}^{-2}$ 

0

**D**  $8.7 \times 10^5 \,\mathrm{m}^2 \,\mathrm{s}^{-2}$ 

0

(Total 1 mark)



A transparent illuminated box contains small smoke particles and air.

The smoke particles are observed to move randomly when viewed through a microscope.

What is the cause of this observation of Brownian motion?

- **A** Smoke particles gaining kinetic energy by the absorption of light.
- 0

- **B** Collisions between smoke particles and air molecules.
- 0
- **C** Smoke particles moving in convection currents caused by the air being heated by the light.
- 0
- **D** The smoke particles moving randomly due to their temperature.
- 0

(Total 1 mark)

The diagram shows a gas particle about to collide elastically with a wall.



Which diagram shows the correct change in momentum  $\Delta mv$  that occurs during the collision?

A



В



C



D



- A 0
- В
- C o
- D o

(Total 1 mark)

| 4 |
|---|
|---|

Specimens P and Q of the same gas exert the same pressure. P is at a temperature of 280 K and contains  $10^{20}$  molecules per unit volume. The temperature of **Q** is 350 K.

What is the number of molecules per unit volume in **Q**?

- Α  $0.09 \times 10^{20}$
- 0
- В  $0.75 \times 10^{20}$
- C  $0.80 \times 10^{20}$ 0
- 0  $1.25 \times 10^{20}$ D

(Total 1 mark)

5

The composition of a carbon dioxide (CO<sub>2</sub>) molecule is one atom of  $^{12}_{8}\text{C}$  and two atoms of  $^{16}_{8}\text{O}$ .

What is the number of molecules of CO<sub>2</sub> in 2.2 kg of the gas?

0

 $1.0 \times 10^{22}$ 

0

 $3.0 \times 10^{22}$ 

 $3.0 \times 10^{25}$ 

 $4.7 \times 10^{25}$ 

(Total 1 mark)

6

A number of assumptions are made when explaining the behaviour of a gas using the (a) molecular kinetic theory model.

State **one** assumption about the size of molecules.

(1)

The graph shows how the pressure changes with volume for a fixed mass of an ideal gas.

At **A** the temperature of the gas is 27 °C. The gas then undergoes two changes, one from **A** to **B** and then one from **B** to **C**.



(b) Calculate the number of gas molecules trapped in the cylinder using information from the initial situation at **A**.

(2)

(c) Calculate, in K, the change in temperature of the gas during the compression that occurs between **A** and **B**.

(2)

| pare the work raph. | done on the ga | as during the | change from | <b>A</b> to <b>B</b> with that | t from <b>B</b> to <b>C</b> on |
|---------------------|----------------|---------------|-------------|--------------------------------|--------------------------------|
|                     |                |               |             |                                |                                |
|                     |                |               |             |                                |                                |
|                     |                |               |             |                                |                                |
|                     |                |               |             |                                |                                |
|                     |                |               |             |                                |                                |
|                     |                |               |             |                                |                                |
|                     |                |               |             |                                |                                |
| <br>                |                |               |             |                                |                                |
| <br>                |                |               |             |                                |                                |
|                     |                |               |             |                                |                                |
| <br>                |                |               |             |                                |                                |
|                     |                |               |             |                                |                                |

Roding Valley High School