1 The average mass of an air molecule is $4.8 \times 10^{-26} \mathrm{~kg}$
What is the mean square speed of an air molecule at 750 K ?

A $3.3 \times 10^{5} \mathrm{~m}^{2} \mathrm{~s}^{-2}$ \square
B $\quad 4.3 \times 10^{5} \mathrm{~m}^{2} \mathrm{~s}^{-2}$

C $\quad 6.5 \times 10^{5} \mathrm{~m}^{2} \mathrm{~s}^{-2}$

D $\quad 8.7 \times 10^{5} \mathrm{~m}^{2} \mathrm{~s}^{-2}$ \square
(Total 1 mark)
2 A transparent illuminated box contains small smoke particles and air.
The smoke particles are observed to move randomly when viewed through a microscope.
What is the cause of this observation of Brownian motion?

A Smoke particles gaining kinetic energy by the absorption of light.
0
B Collisions between smoke particles and air molecules.
\bigcirc
C Smoke particles moving in convection currents caused by the air being heated by the light.

D The smoke particles moving randomly due to their temperature.

Which diagram shows the correct change in momentum $\Delta m v$ that occurs during the collision?

C

B

D

A $\quad 0$
B 0
C
D 0

Specimens \mathbf{P} and \mathbf{Q} of the same gas exert the same pressure. \mathbf{P} is at a temperature of 280 K and contains 10^{20} molecules per unit volume. The temperature of \mathbf{Q} is 350 K .

What is the number of molecules per unit volume in \mathbf{Q} ?

A $\quad 0.09 \times 10^{20}$
\square
B $\quad 0.75 \times 10^{20}$
0

C $\quad 0.80 \times 10^{20}$
0

D $\quad 1.25 \times 10^{20}$
0
(Total 1 mark)
5 The composition of a carbon dioxide $\left(\mathrm{CO}_{2}\right)$ molecule is one atom of ${ }_{8}^{12} \mathrm{C}$ and two atoms of ${ }_{8}^{18} \mathrm{O}$. What is the number of molecules of CO_{2} in 2.2 kg of the gas?

A 1.0×10^{22}

B 3.0×10^{22}

C 3.0×10^{25}

D 4.7×10^{25}

(Total 1 mark)
6 (a) A number of assumptions are made when explaining the behaviour of a gas using the molecular kinetic theory model.

State one assumption about the size of molecules.
\qquad
\qquad
\qquad

The graph shows how the pressure changes with volume for a fixed mass of an ideal gas.
At \mathbf{A} the temperature of the gas is $27^{\circ} \mathrm{C}$. The gas then undergoes two changes, one from \mathbf{A} to \mathbf{B} and then one from \mathbf{B} to \mathbf{C}.

(b) Calculate the number of gas molecules trapped in the cylinder using information from the initial situation at A.
number of molecules $=$ \qquad
(c) Calculate, in K, the change in temperature of the gas during the compression that occurs between \mathbf{A} and \mathbf{B}.
change in temperature $=$ \qquad K
(d) Deduce whether the temperature of the gas changes during the compression from \mathbf{B} to \mathbf{C}.
(e) Compare the work done on the gas during the change from \mathbf{A} to \mathbf{B} with that from \mathbf{B} to \mathbf{C} on the graph.
\qquad

