6 A fixed mass of gas occupies a volume V. The temperature of the gas increases so that the root mean square velocity of the gas molecules is doubled.
What will the new volume be if the pressure remains constant?

(Total 1 mark)

(a) 'The pressure of an ideal gas is inversely proportional to its volume', is an incomplete statement of Boyle's law.

State two conditions necessary to complete the statement.
1.

(b) A volume of $0.0016 \mathrm{~m}^{3}$ of air at a pressure of $1.0 \times 10^{5} \mathrm{~Pa}$ and a temperature of 290 K is trapped in a cylinder. Under these conditions the volume of air occupied by 1.0 mol is 0.024 m^{3}. The air in the cylinder is heated and at the same time compressed slowly by a piston. The initial condition and final condition of the trapped air are shown in the diagram.

In the following calculations treat air as an ideal gas having a molar mass of 0.029 kg mol^{-1}.
(i) Calculate the final volume of the air trapped in the cylinder.

(ii) Calculate the number of moles of air in the cylinder.
initial

$$
\text { we have } 0.0016 n^{3} \therefore
$$

$$
\begin{align*}
\text { conditions give I mol } & =0.024 \mathrm{~m}^{3} \\
.0016 \mathrm{~m}^{3} \therefore \mathrm{mols} & =\frac{0.0016}{0.024} \tag{1}\\
\text { number of moles } & =0.067
\end{align*}
$$

(iii) Calculate the initial density of air trapped in the cylinder.

$$
\begin{array}{r}
C=\frac{M}{V}=\frac{0.067 \times 0.029}{0.0016} \\
\text { density }=\frac{1.2}{\mathrm{~kg} \mathrm{~m}^{-3}}
\end{array}
$$

(c) State and explain what happens to the speed of molecules in a gas as the temperature increases.

- As T up the root mean square speed up - You must mention mean/average/rms as there is a - range of speeds $-(3 / 2) \mathrm{kT}=0.5 \mathrm{~m}(\mathrm{crms})^{\wedge} 2$ \qquad
\qquad
\qquad
(a) Lead has a specific heat capacity of $130 \mathrm{~J} \mathrm{~kg}^{-1} \mathrm{~K}^{-1}$.

Explain what is meant by this statement.
\square
(b) Lead of mass 0.75 kg is heated from $21^{\circ} \mathrm{C}$ to its melting point and continues to be heated until it has all melted.

Calculate how much energy is supplied to the lead.
Give your answer to an appropriate number of significant figures.
melting point of lead $=327.5^{\circ} \mathrm{C}$
specific latent heat of fusion of lead $=23000 \mathrm{~J} \mathrm{~kg}^{-1}$

 ray supplied \qquad J
(a) Define the Avogadro constant.

Number of atoms in 1 mole of an element
(b) (i) Calculate the mean kinetic energy of krypton atoms in a sample of gas at a temperature of $22^{\circ} \mathrm{C}$.

$$
\begin{array}{r}
\frac{3}{2} k T=\frac{1}{2} m\left(C_{\text {rms }}\right)^{2} \quad \frac{3}{2} k \times(22+273) \tag{1}\\
\text { mean kinetic energy }-G .1 \times 10^{-21}
\end{array}
$$

(ii) Calculate the mean-square speed, $\left(c_{\mathrm{rms}}\right)^{2}$, of krypton atoms in a sample of gas at a temperature of $22^{\circ} \mathrm{C}$.
State an appropriate unit for your answer.
mass of 1 mole of krypton $=0.084 \mathrm{~kg}$

mean-square speed \qquad unit

(c) A sample of gas consists of a mixture of krypton and argon atoms.

The mass of a krypton atom is greater than that of an argon atom.
State and explain how the mean-square speed of krypton atoms in the gas compares with that of the argon atoms at the same temperature.

Both have same average Ek. So the higher mass the - less the crms. Krypton slower

(Total 7 marks)
10
(a) Define the specific latent heat of vaporisation of water.

- Energy required to turn 1 kg of water at 100
- degrees celcius to gas at 100 degrees.
(b) An insulated copper can of mass 20 g contains 50 g of water both at a temperature of $84^{\circ} \mathrm{C}$. A block of copper of mass 47 g at a temperature of $990^{\circ} \mathrm{C}$ is lowered into the water as shown in the figure below. As a result, the temperature of the can and its contents reaches $100^{\circ} \mathrm{C}$ and some of the water turns to steam.
specific heat capacity of copper $=390 \mathrm{~J} \mathrm{~kg}^{-1} \mathrm{~K}^{-1}$
specific heat capacity of water $=4200 \mathrm{~J} \mathrm{~kg}^{-1} \mathrm{~K}^{-1}$
specific latent heat of vaporisation of water $=2.3 \times 10^{6} \mathrm{~J} \mathrm{~kg}^{-1}$

20 g copper at $84^{\circ} \mathrm{C}$

Before placement

After placement
(i) Calculate how much thermal energy is transferred from the copper block as it cools to $100^{\circ} \mathrm{C}$.
Give your answer to an appropriate number of significant figures.

$$
\Delta E=m \Delta \Delta \theta=47 \times 10^{.3} \times 390 \times(990-100)
$$

(ii) Calculate how much of this thermal energy is available to make steam.

Assume no heat is lost to the surroundings.
$m C \Delta O * m C \Delta O$ w later

(iii) Calculate the maximum mass of steam that may be produced.

ce 13 kS 2 sk

(Total 7 marks)

1 A student measures the power of a microwave oven. He places 200 g of water at $23^{\circ} \mathrm{C}$ into the microwave and heats it on full power for 1 minute. When he removes it, the temperature of the water is $79^{\circ} \mathrm{C}$.

The specific heat capacity of water is $4200 \mathrm{Jkg}^{-1} \mathrm{~K}^{-1}$.
What is the average rate at which thermal energy is gained by the water?

B 840 W
0

C $\quad 1.1 \mathrm{~kW}$
0

D 4.6 kW
0
(Total 1 mark)

You may use a diagram to help make clear aspects of your answer.
\qquad
energy loss of water in cup = energy gained by ice cube

3 An ice cube of mass 0.010 kg at a temperature of $0^{\circ} \mathrm{C}$ is dropped into a cup containing 0.10 kg of water at a temperature of $15^{\circ} \mathrm{C}$.

What is the maximum estimated change in temperature of the contents of the cup?

```
specific heat capacity of water = 4200 J kg-1 K-1
specific latent heat of fusion of ice = 3.4 \times 105 J kgg
```


