0	3	$F i g u r e$
4		

Figure 4

The oven contains an ideal gas kept at a constant temperature. Atoms of the gas emerge from the oven and some pass through the narrow slit \mathbf{S} in a rapidly rotating drum. The drum is in a vacuum.

0	3	1

\qquad
\qquad
\qquad
\qquad
\qquad

One atom leaves the oven, enters the drum through \mathbf{S} and travels in a straight line across the drum.
In the time taken for the atom to move from \mathbf{S} to the detector $\mathbf{A B}$, the drum rotates through 45°. The atom hits the detector at point \mathbf{C}, as shown in Figure 5.
drum diameter $=$ distance from \mathbf{S} to $\mathbf{A}=0.500 \mathrm{~m}$ drum rotational speed $=120$ revolutions per second

0	3	2
2		

| 0 | 3 | 3 | |
| :--- | :--- | :--- | :--- | of the atoms of the gas in the oven.

The molar mass of the gas is $0.209 \mathrm{~kg} \mathrm{~mol}^{-1}$.
Calculate the temperature of the gas in the oven.

Question 3 continues on the next page

| 0 | 3 | 4 | The oven temperature is kept constant during the experiment but the pressure in the |
| :--- | :--- | :--- | :--- | oven decreases as atoms leave through the exit hole.

Explain, using the kinetic theory, why the pressure decreases.
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

| 0 | 3 | 5 |
| :--- | :--- | :--- | The pressure of gas in the oven is initially $5.0 \times 10^{4} \mathrm{~Pa}$.

The volume of the oven is $2.7 \times 10^{-2} \mathrm{~m}^{3}$.
During the experiment the pressure in the oven decreases to $4.5 \times 10^{4} \mathrm{~Pa}$.
Calculate, in mol, the amount of gas that has emerged from the oven.

| 0 | $\mathbf{3}$ | $\mathbf{6}$ Atoms enter the drum every time \mathbf{S} passes the exit hole. The detector darkens at the |
| :--- | :--- | :--- | :--- | point where an atom strikes it.

After a time, the detector is removed from the drum.
Figure 6 shows the appearance of the detector.
Figure 6

A new detector is placed in the drum and the experiment is repeated with a new sample of the same gas at a higher temperature.

Describe and explain the appearance of this detector when the experiment is repeated.
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Turn over for the next question

Section B

Each of Questions $\mathbf{0 7}$ to $\mathbf{3 1}$ is followed by four responses, A, B, C and D.
For each question select the best response.

Only one answer per question is allowed.
For each question, completely fill in the circle alongside the appropriate answer.
CORRECT METHOD
WRONG METHODS $\otimes \odot \otimes$
If you want to change your answer you must cross out your original answer as shown.
If you wish to return to an answer previously crossed out, ring the answer you now wish to select as shown.

You may do your working in the blank space around each question but this will not be marked.
Do not use additional sheets for this working.

| 0 | 7 | A solar panel transfers energy at a rate of 1.2 kW to liquid passing through it. The liquid |
| :--- | :--- | :--- | has a specific heat capacity of $4.0 \mathrm{~kJ} \mathrm{~kg}^{-1} \mathrm{~K}^{-1}$.

When the liquid flows through the solar panel, its temperature increases by 3.0 K .
The flow rate of the liquid is

A $0.10 \mathrm{~kg} \mathrm{~s}^{-1}$. \square
B $1.1 \mathrm{~kg} \mathrm{~s}^{-1}$. \square
C $10 \mathrm{~kg} \mathrm{~s}^{-1}$. \square
D $100 \mathrm{~kg} \mathrm{~s}^{-1}$. \square

| 0 | 8 |
| :--- | :--- | A gas occupies a volume V. Its particles have a root mean square speed $\left(c_{\mathrm{rms}}\right)$ of u.

The gas is compressed at constant temperature to a volume 0.5 V .
What is the root mean square speed of the gas particles after compression?
A $\frac{u}{2}$
0
B u
0
C $2 u$
0
D $4 u$ \square

| 0 | 9 |
| :--- | :--- | A fixed mass of gas is heated at constant volume. The graph is drawn for this process.

What do x and y represent?

	\boldsymbol{x}	y
A	pressure in Pa	temperature in ${ }^{\circ} \mathrm{C}$
B	temperature in ${ }^{\circ} \mathrm{C}$	pressure in Pa
C	pressure in Pa	temperature in K
D	temperature in K	pressure in Pa

| 1 | $\mathbf{0}$ | Three particles are travelling in the same plane with velocities as shown in the vector |
| :--- | :--- | :--- | diagram.

What is the root mean square speed of the particles?

A $4.3 \mathrm{~m} \mathrm{~s}^{-1}$ \square
B $7.5 \mathrm{~m} \mathrm{~s}^{-1}$
0
C $19 \mathrm{~m} \mathrm{~s}^{-1}$ \square
D $56 \mathrm{~m} \mathrm{~s}^{-1}$ \square

Turn over for the next question

