Section A

Answer all questions in this section.

$\mathbf{0}$	$\mathbf{1}$	A perfectly insulated flask contains a sample of metal \mathbf{M} at a temperature of $-10^{\circ} \mathrm{C}$. l . ${ }^{\circ}$.

Figure 1 shows how the temperature of the sample changes when energy is transferred to it at a constant rate of 35 W .

Figure 1

$\mathbf{0}$	$\mathbf{1}$.	$\mathbf{1}$

\qquad ${ }^{\circ} \mathrm{C}$

| 0 | 1 | $\mathbf{2}$ Explain how the energy transferred to the sample changes the arrangement of the |
| :--- | :--- | :--- | atoms during the time interval t_{A} to t_{B}.

\qquad
\qquad
\qquad

| 0 | 1 | 3 | 3 |
| :--- | :--- | :--- | :--- | the atoms during the time interval t_{A} to t_{B}.

[2 marks]
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

\qquad
\qquad
\qquad

Question 1 continues on the next page

Determine the specific heat capacity of \mathbf{M} when in the liquid state. State an appropriate SI unit for your answer.
\qquad unit $=$ \qquad

| $\mathbf{0}$ | $\mathbf{1}$ | $\mathbf{6}$ Table 1 shows the specific latent heats of fusion l for elements that are liquid at |
| :--- | :--- | :--- | :--- | similar temperatures to \mathbf{M}.

Table 1

Element	Caesium	Gallium	Mercury	Rubidium
$\boldsymbol{/ / \mathbf { k J ~ k g }}$	-1	16	80	11
26				

M is known to be one of the elements in Table 1.
Identify M.

Section B

Each of Questions $\mathbf{0 7}$ to $\mathbf{3 1}$ is followed by four responses, A, B, C and D.

For each question select the best response.

Only one answer per question is allowed.
For each question, completely fill in the circle alongside the appropriate answer.
CORRECT METHOD
WRONG METHODS Φ © $\otimes \nless$
If you want to change your answer you must cross out your original answer as shown.
If you wish to return to an answer previously crossed out, ring the answer you now wish to select as shown.

You may do your working in the blank space around each question but this will not be marked.
Do not use additional sheets for this working.

| $\mathbf{0}$ | $\mathbf{7}$ | When an ideal gas at a temperature of $27^{\circ} \mathrm{C}$ is suddenly compressed to one quarter of its |
| :--- | :--- | :--- | volume, the pressure increases by a factor of 7

What is the new temperature of the gas?

A $15{ }^{\circ} \mathrm{C}$

B $47{ }^{\circ} \mathrm{C}$

C $171{ }^{\circ} \mathrm{C}$ \square
D $252{ }^{\circ} \mathrm{C}$ \square

Turn over for the next question

$\mathbf{0}$	$\mathbf{8}$

The flasks contain an ideal gas.
The volume of \mathbf{X} is twice the volume of \mathbf{Y}. When \mathbf{X} is at a temperature of 100 K and \mathbf{Y} is at a temperature of 400 K there is no net transfer of particles between the flasks.
\mathbf{X} contains gas of mass m.
What is the mass of gas in Y ?

A $\frac{m}{8}$

B $\frac{m}{2}$

$$
0
$$

C $2 m$ \square

D $8 m$ \square
$0 \mathbf{0}$ A sample \mathbf{P} of an ideal gas contains 1 mol at an absolute temperature T.
A second sample \mathbf{Q} of an ideal gas contains $\frac{2}{3} \mathrm{~mol}$ at an absolute temperature $2 T$.
The total molecular kinetic energy of \mathbf{P} is E.
What is the total molecular kinetic energy of \mathbf{Q} ?

A $\frac{2}{3} E$

B $\frac{3}{4} E$ \square

C $\frac{4}{3} E$

D $\frac{3}{2} E$

$$
\begin{array}{|l|}
\hline 0 \\
\hline
\end{array}
$$

10 An ideal gas is contained in a cubical box of side length a.
The gas has N molecules each of mass m.
What is the pressure exerted by the gas on the walls of the box?

A $\frac{m N a^{3}}{2} \times c_{\mathrm{rms}}{ }^{2}$

B $\frac{m N a^{2}}{2} \times c_{\mathrm{rms}}{ }^{2}$

C $\frac{m N}{3 a^{2}} \times c_{\mathrm{rms}}{ }^{2}$

D $\frac{m N}{3 a^{3}} \times c_{\mathrm{rms}}{ }^{2}$

| $\mathbf{1}$ | $\mathbf{1}$ Which statement is true about an experiment where Brownian motion is demonstrated |
| :--- | :--- | using smoke particles in air?

A The experiment makes it possible to see the motion of air molecules. \square
B The motion is caused by the collisions of smoke particles with each other. \square

C The motion is caused by collisions between air molecules and smoke particles.

D The motion occurs because air is a mixture of gases and the molecules have different masses.

| 1 | 2 |
| :--- | :--- | The graph shows how the gravitational potential V varies with the vertical distance d from the surface of the Earth.

What does the gradient of the graph represent at the surface of the Earth?

A potential energy
B mass of the Earth

C magnitude of the gravitational constant
D magnitude of the gravitational field strength

