

0 1 . 3 P collides repeatedly with W.	
Show that the frequency f of collisions is $\frac{c}{2l}$. time to type from w to other [1 mark] wall & bark: $S=d \Rightarrow trd = 2L$ second $T = \frac{c}{2l}$	-
 time between collisions is 2L/c and f=1/T so f=C/2L Deduce an expression, in terms of m, c and V, for the contribution of P to the pressure exerted on W. Refer to appropriate Newton's laws of motion. Δp for 1 collision is -2mc and there are c/2l collisions in a second [2 marks] total Δp in 1 second is therfore 	
$-2mcK \stackrel{c}{\subseteq} = \stackrel{m}{\underset{c}{\subseteq}} \stackrel{c}{\underset{c}{\otimes}} \cdot$ since $\Delta p = f\Delta t$ and $\Delta t = 1$ we can say that $-mc^2/l$ is also eqve use Newton's third law - so force on the wall is the same without the negative sign. We therefore now need to divide by 1^2 since that is the area of the wall w and Pressure = F/A $P = (\frac{mc}{L}) = \frac{mc}{l^3} = \frac{mc}{l^3}$	
Turn over for the next question	5

7

Section B						
Each of Questions 08 to 32 is followed by four responses, A, B, C and D.						
For each question select the best response.						
Only one answer per question is allowed. For each question, completely fill in the circle alongside the appropriate answer.						
CORRECT METHOD WRONG METHODS 🗴 💿 🚓 🗹						
If you want to change your answer you must cross out your original answer as shown.						
If you wish to return to an answer previously crossed out, ring the answer you now wish to select as shown.						
You may do your working in the blank space around each question but this will not be marked. Do not use additional sheets for this working.						
0 8 A 1000 W heater is 75% efficient. The heater is used to increase the temperature of some water from 10 °C to 85 °C in 7 hours.						
What mass of water is heated? this means that 1000X0.75 J are provided to heat the water every second						
specific heat capacity of water = $4200 \text{ J kg}^{-1} \text{ K}^{-1}$						
energy supplied in 7 hours = $750^{\circ}7^{\circ}60^{\circ}60^{\circ} = 1.89 \times 10^{\circ}73^{\circ}$						
A 1.0 kg						
B 13 kg □ C △ O						
c 60 kg 🔀 7						
D 110 kg \Box = $\left[\cdot gq \neq ID \right]$ = 00 V						
4200 × (85-1)						
0 9 Which can lead to a value for the absolute zero of temperature? [1 mark]						
A Boyle's law						
B Brownian motion						
C Charles's law						
D Rutherford scattering						

In the kinetic theory model, it is assumed that there are many identical particles moving at random.
State two other assumptions made in deriving the equation $pV = \frac{1}{3}Nm (c_{rms})^2$. [2 marks]
1 all collosions are perfectly elastic
2 time between collisions is large compared to the time of the collision
point masses/volume of particles is small cf vol of gas forces between partciles are 0 (negligible)
Explain why molecules of a gas exert a force on the walls of a container. Refer to Newton's laws of motion in your answer. [3 marks]
When a molecule collides with a wall its velocity changes direction which means its momentum has changed. From N2 we know that if there is a change in momentum of the molecule there must be a force acting on the molecule - which comes in this case from the wall. N3 tells us that 'every force has an equal and opposite reaction acting on a different object' and so the particle also exerts a force on the wall. Clearly the wall has an area so we know have a force acting over and area and hence a pressure

0 8 A fixed volume of an ideal gas is heated.

Which row gives quantities that double when the kelvin temperature of the gas doubles? [1 mark]

A	\star rms speed of the molecules	<pre>pressure of the gas</pre>	0
В	\checkmark density of the gas	rms speed of the molecules	0
с	\checkmark internal energy of the gas	✓ density of the gas	
D	\checkmark pressure of the gas	Internal energy of the gas	

0 9 A planet of radius R and mass M has a gravitational field strength of g at its surface.

Which row describes a planet with a gravitational field strength of 4g at its surface? [1 mark]

	Radius of planet	Mass of planet	
Α	2 <i>R</i>	2 <i>M</i>	0
в	$R\sqrt{2}$	$\frac{M}{2}$	
С	$\frac{R}{\sqrt{2}}$	$\frac{M}{2}$	
D	$\frac{R}{\sqrt{2}}$	2 <i>M</i>	