1 Which list puts the forces in order of increasing magnitude?

(Total 1 mark)
2 A student carries out an experiment to determine the resistivity of a metal wire. She determines the resistance from of enements of differencebetween the ends of the wire and the correspondin, current. She measures the length of the wire with a ruler and the diametery the wire using a micor. Each measurement Is made with an uncertainty of 1%

Which measurement gives the largest uncertainty in the calculated value of the resistivity?

C length
D potential difference

(Total 1 mark)

3 A student has a diffraction grating that is marked 3.5×10^{3} lines per m .
(a) Calculate the percentage uncertainty in the number of lines per metre suggested by this marking.

$$
3,5 \times 10^{3}=3500
$$ 3500

(b) Determine the grating spacing.

$$
S_{\text {pare }}=\frac{1}{3500} \mathrm{~m}
$$

$$
\text { grating spacing }=\xrightarrow[\mathrm{mm}]{\mathrm{O}}
$$

(c) State the absolute uncertainty in the value of the spacing.

$$
\begin{aligned}
0.29 \pm \frac{2.9}{100} & =0.708 \\
& =0.01
\end{aligned}
$$

absolute uncertainty $=$ \qquad mm
(d) The student sets up the apparatus shown in Figure 1 in an experiment to confirm the value marked on the diffraction grating.

Figure 1

The laser has a wavelength of 628 nm . Figure 2 shows part of the interference pattern that appears on the screen. A ruler gives the scale.

Figure 2

Use Figure 2 to determine the spacing between two adjacent maxima in the interference pattern. Show all your working clearly.

spacing $=$ \qquad mm
(e) Calculate the number of lines per metre on the grating.

(f) State and explain whether the value for the number of lines per m obtained in part (e) is in agreement with the value stated on the grating.

$$
\begin{align*}
& \% d y=\frac{3350}{3500}=\approx 4-5 \% \\
& \text { nope lias outride the 2.9\% } \tag{2}
\end{align*}
$$

(g) State one safety precaution that you would take if you were to carry out the experiment that was performed by the student.

\qquad
\qquad
1.0 kilowatt-hour (kW h) is equivalent to

A $6.3 \times 10^{18} \mathrm{eV}$

B $6.3 \times 10^{21} \mathrm{eV}$
C $2.3 \times 10^{22} \mathrm{eV}$

5 Measurements are made to determine the tension, length and mass per unit length of a string stretched between two supports. The percentage uncertainties in these measurements are shown below.

Quantity	Percentage uncertainty
Length	0.80%
Tension	4.0%
Mass per unit length	2.0%

A stationary wave is formed on the string.
What is the percentage uncertainty in the calculated value of the frequency of the first harmonic?
 repel one another as shown in Figure 1.

The plan and sectional views in Figure 1 identify the dimensions of these magnets.
Each magnet has a circular cross-section and the central hole is circular.
Figure 1

(a) A student uses digital vernier calipers to find the external diameter D of magnet \mathbf{B}, as shown in Figure 2.

Figure 2

State precautions the student should take to reduce the effect of systematic and random errors when making this measurement.

Precaution to reduce effect of systematic error:
\ldots tare the micrometer (set it to zero)before you start)

Precaution to reduce effect of random error:

(b) Figure 3 shows the reading on the calipers as the internal diameter d is measured.

Draw the sectional view of magnet \mathbf{B} on Figure $\mathbf{3}$ to indicate how d is measured.
Figure 3

(c) Figure $\mathbf{4}$ shows the reading on the calipers when the thickness t of magnet \mathbf{B} is measured.

Figure 4

$$
V=h \times\left(\pi\left(\frac{d}{4}\right)^{2}-\pi\left(\frac{d}{2}\right)^{2}\right)
$$

The readings that correspond to the dimensions of magnet \mathbf{B} are shown in Figures 2, 3 and 4.
Calculate the volume of magnet \mathbf{B}.

inner $=19.32 \mathrm{~mm}$
height $=12.09 \mathrm{~mm}$
outer $=59.90$
so its vol of outer cylinder - vol of inner cylinder

2.8
volume $=$ \qquad m^{3}
(d) The student measures the mass $m_{\mathbf{B}}$ of magnet \mathbf{B} and then positions the magnet so it is in equilibrium above magnet \mathbf{A} as shown in Figure 5.
The student measures the distance h.

The student adds modelling clay to magnet \mathbf{B} to reduce h by 50\% She measures the mass m_{C} of this clay.

She concludes that the force F exerted on magnet \mathbf{B} by magnet \mathbf{A} is given by $F=\frac{k}{h^{3}}$ where k is a constant.

Describe an experiment to test the student's conclusion that $F=\frac{k}{h^{3}}$
Your answer should include:

- the procedure that could be used
- how the data produced could be analysed by a graphical method
- how the value of the constant k could be determined.
\qquad

Mark schemes

1

D

2
B

3
(a) $2.9 \% \sqrt{ }$

Allow 3\%
(d) Clear indication that at least 10 spaces have been measured to give a spacing $=5.24$ $\mathrm{mm} \sqrt{ }$
spacing from at least 10 spaces
Allow answer within range ± 0.05
(e) Substitution in $d \sin \theta=n \lambda \checkmark$

The 25 spaces could appear here as n with $\sin \theta$ as 0.135 / 2.5
$d=0.300 \times 10^{-3} \mathrm{~m} \mathrm{so}$
number of lines $=3.34 \times 10^{3} \checkmark$
Condone error in powers of 10 in substitution
Allow ecf from 1-4 value of spacing
(f) Calculates \% difference (4.6\%) \checkmark
and makes judgement concerning agreement \checkmark
Allow ecf from 1-5 value
(g) care not to look directly into the laser beam \checkmark OR
care to avoid possibility of reflected laser beam \checkmark
OR
warning signs that laser is in use outside the laboratory $\sqrt{ }$ ANY ONE

6 (a) to reduce the impact of systematic error: tare [zero] the callipers before use OR
take reading with callipers fully closed (at some stage) and subtract from readings ${ }_{1} \checkmark$
to reduce the impact of random error: take measurement several times for different diameters/directions and calculate mean
OR
take measurement several times for different diameters to check for anomalies ${ }_{2} \sqrt{ }$
(b) use of inside jaws on callipers required: must have a clear drawing with inside jaws in contact internal diameter ${ }_{1} \checkmark$

A sectional view of the magnet must be given
Jaws must be inside cavity (as here)
(c) Determines a cross-sectional area: (larger $\mathrm{A}=) 2.82$
$\times 10^{-3}$ or $($ smaller area $=) 2.932 \times 10^{-4}$
OR
states that the cross sectional area from Δ
$A=\left(\frac{\pi D^{2}}{4}-\frac{\pi d^{2}}{4}\right)$
OR
Calculates one volume correctly ${ }_{1} \checkmark$
Allow POT error ${ }_{1} \sqrt{ }$ and ${ }_{2} \sqrt{ }$
Where r is used must have an additional statement on how r relates to D (in the case where there is no correct substitution and no correct answer)
substitution of $D=59.90, d=19.32$ and $t=12.09$ into
$V=\left(\frac{\pi D^{2}}{4}-\frac{\pi d^{2}}{4}\right) \times t$

OR

$V=$ their $\Delta A \times 12.09$

OR

Correctly finds difference in their volumes ${ }_{2} \sqrt{ }$
Or equivalent
Correct substitution into
$V=\left(\frac{\pi D^{2}}{4}-\frac{\pi d^{2}}{4}\right) \times t$
receives the first two marks (allow POT)
Expect values:
$V_{D}=3.41 \times 10^{-5}\left(\mathrm{~m}^{3}\right)$
$V_{d}=3.54 \times 10^{-6}\left(\mathrm{~m}^{3}\right)$
$3.1 \times 10^{-5} / 3.05 \times 10^{-5} / 3.053 \times 10^{-5}\left(\mathrm{~m}^{3}\right)_{3} \checkmark$ no limit on maximum sf
Correct answer scores 3
Allow 3rd sf round error where
answer rounds to 3.1×10^{-5}
when correct method seen
(d) Procedure:

MAX 2

Take more measurement(s) of h for additional / different masses (of clay) \checkmark More than one added mass, allow varies amount of clay

Convert (total) mass into weight (and equal to the repulsive force of magnet \mathbf{A} on magnet B) \checkmark

Describe method to measure h using ruler or set square \checkmark
(in this case determination of k must be consistent with graph)

Analysis:

Plot a graph of F against $1 / h^{3} \sqrt{ }$
Condone $1 / h^{3}$ against F or equivalent
Should be a straight line of best fit $\sqrt{ }$
This mark can be awarded if seen by drawing of straight line with positive gradient on sketch of graph

Determination of \boldsymbol{k} :

MAX 1

Measure gradient and set equal to $k \checkmark$
Allow one mark for plot of F against h^{3} and statement that area under graph is k. Mark Procedure as scheme

Substitute (total) weight into formula and rearrange to find $k \checkmark$
Must be consistent with graph

