1 Which list puts the forces in order of increasing magnitude?
A $2 \mathrm{pN}<2 \mathrm{fN}<2 \mathrm{TN}<2 \mathrm{GN}$

B $\quad 2 \mathrm{pN}<2 \mathrm{fN}<2 \mathrm{GN}<2 \mathrm{TN}$

C $\quad 2 \mathrm{fN}<2 \mathrm{pN}<2 \mathrm{TN}<2 \mathrm{GN}$

D $\quad 2 \mathrm{fN}<2 \mathrm{pN}<2 \mathrm{GN}<2 \mathrm{TN}$
(Total 1 mark)
2 A student carries out an experiment to determine the resistivity of a metal wire.
She determines the resistance from measurements of potential difference between the ends of the wire and the corresponding current. She measures the length of the wire with a ruler and the diameter of the wire using a micrometer. Each measurement is made with an uncertainty of 1%

Which measurement gives the largest uncertainty in the calculated value of the resistivity?

A current

B diameter

C length

D potential difference

(Total 1 mark)
3 A student has a diffraction grating that is marked 3.5×10^{3} lines per m .
(a) Calculate the percentage uncertainty in the number of lines per metre suggested by this marking.
\qquad \%
(b) Determine the grating spacing.
\qquad
(c) State the absolute uncertainty in the value of the spacing.
absolute uncertainty $=$ \qquad mm
(d) The student sets up the apparatus shown in Figure 1 in an experiment to confirm the value marked on the diffraction grating.

Figure 1

The laser has a wavelength of 628 nm . Figure 2 shows part of the interference pattern that appears on the screen. A ruler gives the scale.

Figure 2

Use Figure 2 to determine the spacing between two adjacent maxima in the interference pattern. Show all your working clearly.
\qquad mm
(e) Calculate the number of lines per metre on the grating.
number of lines $=$
(f) State and explain whether the value for the number of lines per m obtained in part (e) is in agreement with the value stated on the grating.
\qquad
\qquad
\qquad
(g) State one safety precaution that you would take if you were to carry out the experiment that was performed by the student.
\qquad
\qquad
\qquad
$4 \quad 1.0$ kilowatt-hour (kW h) is equivalent to
A $6.3 \times 10^{18} \mathrm{eV}$

B $6.3 \times 10^{21} \mathrm{eV}$

C $\quad 2.3 \times 10^{22} \mathrm{eV}$
\bigcirc

D $\quad 2.3 \times 10^{25} \mathrm{eV}$ \bigcirc
(Total 1 mark)

5 Measurements are made to determine the tension, length and mass per unit length of a string stretched between two supports. The percentage uncertainties in these measurements are shown below.

Quantity	Percentage uncertainty
Length	0.80%
Tension	4.0%
Mass per unit length	2.0%

A stationary wave is formed on the string.
What is the percentage uncertainty in the calculated value of the frequency of the first harmonic?

A 1.8%

B 3.8%

C 6.8%

$$
0
$$

D 13%
\bigcirc repel one another as shown in Figure 1.

The plan and sectional views in Figure 1 identify the dimensions of these magnets.
Each magnet has a circular cross-section and the central hole is circular.
Figure 1

(a) A student uses digital vernier calipers to find the external diameter D of magnet \mathbf{B}, as shown in Figure 2.

Figure 2

State precautions the student should take to reduce the effect of systematic and random errors when making this measurement.

Precaution to reduce effect of systematic error:
\qquad
\qquad
\qquad
Precaution to reduce effect of random error:
\qquad
\qquad
\qquad
(b) Figure 3 shows the reading on the calipers as the internal diameter d is measured.

Draw the sectional view of magnet \mathbf{B} on Figure $\mathbf{3}$ to indicate how d is measured.
Figure 3

(c) Figure $\mathbf{4}$ shows the reading on the calipers when the thickness t of magnet \mathbf{B} is measured.

Figure 4

The readings that correspond to the dimensions of magnet \mathbf{B} are shown in Figures 2, 3 and 4.

Calculate the volume of magnet \mathbf{B}.
volume $=$ \qquad m^{3}
(d) The student measures the mass $m_{\mathbf{B}}$ of magnet \mathbf{B} and then positions the magnet so it is in equilibrium above magnet \mathbf{A} as shown in Figure 5.
The student measures the distance h.

The student adds modelling clay to magnet \mathbf{B} to reduce h by 50\% She measures the mass m_{C} of this clay.

She concludes that the force F exerted on magnet \mathbf{B} by magnet \mathbf{A} is given by $F=\frac{k}{h^{3}}$ where k is a constant.

Describe an experiment to test the student's conclusion that $F=\frac{k}{h^{3}}$
Your answer should include:

- the procedure that could be used
- how the data produced could be analysed by a graphical method
- how the value of the constant k could be determined.
\qquad

